Abstract:
This invention relates to a method for reducing the content of sulfide-type compounds of formula R1-S—R2, with R1 and R2 selected from among the methyl (CH3) and ethyl (C2H5) radicals, of a gasoline that contains diolefins, monoolefins, and sulfur. The method implements a first catalytic step for selective hydrogenation of diolefins at a temperature of between 60° C. and 150° C. and then a step for heating the effluent that is obtained from the first step with a temperature difference ΔT of between 10° C. and 100° C. and a second catalytic step on the effluent that is heated in such a way as to produce an effluent that has a content of sulfide-type compounds of formula R1-S—R2, with R1 and R2 selected from among the methyl (CH3) and ethyl (C2H5) radicals, lower than that of the starting gasoline.
Abstract:
A highly efficient method for the conversion of a natural product into the high density fuel RJ-4 with concomitant evolution of isobutylene for conversion to fuels and polymers, more specifically, embodiments of the invention relate to efficient methods for the conversion of the renewable, linear terpene alcohol, linalool into a drop-in, high density fuel suitable for ramjet or missile propulsion.
Abstract:
The process and apparatus of the present invention selectively hydrogenates a heavier olefinic naphtha stream in an upstream catalyst bed and the hydrogenated effluent and a lighter olefinic naphtha stream in a downstream catalyst bed. The heavier di-alkenes are less re-active and are contacted with more hydrogenation catalyst than the lighter di-alkenes which are more re-active.
Abstract:
A process for reducing the sulfur content of a hydrocarbon stream is disclosed. A full range cracked naphtha is contacted with a hydrogenation catalyst to convert at least a portion of the dienes and mercaptans to thioethers and to hydrogenate at least a portion of the dienes. The full range cracked naphtha is fractionated into a light naphtha fraction, a medium naphtha fraction, and a heavy naphtha fraction. The heavy naphtha fraction is hydrodesulfurized. The medium naphtha fraction is mixed with hydrogen and gas oil to form a mixture, which is contacted with a hydrodesulfurization catalyst to produce a medium naphtha fraction having a reduced sulfur concentration. The light, heavy, and medium naphtha fractions may then be recombined to form a hydrodesulfurized product having a sulfur content of less than 10 ppm in some embodiments.
Abstract:
One exemplary embodiment can be a hydrotreating process. The hydrotreating process can include providing a first feed stream having a coker naphtha with a bromine number of about 10-about 120, combining the first feed stream with a second feed stream having a straight run naphtha with a bromine number of less than about 10 to create a combined feed, providing the combined feed to a hydrotreating reactor having at least one catalyst bed, and separating a quench stream from the second feed stream and providing the quench stream after the at least one catalyst bed.
Abstract:
A system and method are disclosed that allow a user to combine raw light hydrocarbons (e.g., C4 hydrocarbons) and raw heavy hydrocarbons (e.g., gasolines and/or C5+ hydrocarbons) streams together prior to hydrogenation. The system and method allow light and heavy hydrocarbons to be hydrogenated simultaneously within a single reactor. An system and method are also disclosed which provides specific conditions for minimizing light hydrocarbon losses during hydrocarbon processing. In particular, the disclosed method provides pressure conditions in post reactor stabilizers that facilitate venting of un-reacted hydrogen and the condensation of light hydrocarbons. Under the disclosed conditions, light hydrocarbon losses are minimized during the method and the condensed light hydrocarbons can be either recycled back into the system or utilized as a fungible energy source.
Abstract:
The present invention relates to a method of hydro-upgrading inferior gasoline through ultra-deep desulfurization and octane number recovery. The method comprises the following steps: cutting inferior full-range gasoline into light fraction gasoline and heavy fraction gasolines; contacting the light fraction gasoline successively with a catalyst for selective diene removal and a catalyst for desulfurization and hydrocarbon multi-branched-chain hydroisomerization; contacting the heavy fraction gasoline with the catalyst for selective hydrodesulfurization in a first reactor, and contacting the reaction effluent from the first reactor with a catalyst for supplemental desulfurization and hydrocarbon aromatization/single-branched-chain hydroisomerization in a second reactor; and blending the treated light fraction gasoline and the heavy fraction gasoline to obtain the ultra-clean gasoline product. The hydro-upgrading method of the invention is suitable for hydro-upgrading inferior gasoline, especially for hydro-upgrading inferior FCC gasoline with ultra-high sulfur content and high olefin content to obtain excellent hydro-upgrading effects.
Abstract:
A process is disclosed for selectively removing isobutene and butadiene from a stream, the process comprising contacting the stream with a hydrogenation catalyst to hydrogenate butadiene and an oligomerization catalyst to oligomerize isobutene.
Abstract:
A process for recovering DCPD from a hydrocarbon feedstock comprising introducing the hydrocarbon feedstock to a first column, recovering an overhead stream from the first column comprising C9− hydrocarbons, recovering a bottom stream from the first column comprising C10+ hydrocarbons, feeding the bottom stream from the first column to a second column, recovering an overhead stream from the second column comprising DCPD, and recovering a bottom stream from the second column comprising fuel oil, wherein the two columns are sized and operated at defined conditions such as pressures, temperatures, reflux rates, and reboil rates.
Abstract:
A hydrocarbon feedstock containing C5 olefins, C5 diolefins, CPD, DCPD, and aromatics is processed by the steps of heating a hydrocarbon feedstock containing CPD, DCPD, C5 diolefins, benzene, toluene, and xylene in a heating zone, to dimerize CPD to DCPD, thereby forming a first effluent; separating the first effluent into a C6null stream and a C5 diolefin stream; separating the C6null stream into a C6-C9 stream and a C10null stream; separating the C10null stream into a fuel oil stream and a DCPD stream; and hydrotreating the C6-C9 stream to thereby form a BTX stream. In an alternate embodiment, the hydrocarbon feedstock is processed by the steps of heating the hydrocarbon feedstock in a heating zone, to dimerize CPD to DCPD, thereby forming a first effluent; separating the first effluent into a C5-C9 stream and a C10null stream; separating the C10null stream into a fuel oil stream and a DCPD stream; contacting the C5-C9 stream with a selective hydrogenation catalyst, in a first reaction zone and in the presence of hydrogen, to hydrogenate at least a portion of the diolefins, alkynes, and styrene contained in the C5-C9 stream, thereby forming a second effluent; separating the second effluent into a C6-C9 stream and a C5 olefin stream; and contacting the C6-C9 stream with a hydrodesulfurization catalyst, in a second reaction zone and in the presence of hydrogen, to desulfurize at least a portion of the sulfur-containing compounds contained in the C6-C9 stream thereby forming a BTX stream.