Abstract:
Methods of laser cutting polycrystalline diamond tables and polycrystalline diamond compacts are disclosed. Laser cutting of the polycrystalline diamond table provides an alternative to electrical-discharge machining (“EDM”), grinding with a diamond wheel, or lapping with a diamond wheel. Grinding or lapping with a diamond wheel is relatively slow and expensive, as diamond is used to remove a diamond material. EDM cutting of the polycrystalline diamond table is sometimes impractical or even impossible, particularly when the cobalt or other infiltrant or catalyst concentration within the polycrystalline diamond table is very low (e.g., in the case of a leached polycrystalline diamond table). As such, laser cutting provides a valuable alternative machining method that may be employed in various processes such as laser scribing, laser ablation, and laser lapping.
Abstract:
Embodiments disclosed herein involve polycrystalline diamond (“PCD”) tables and polycrystalline diamond compacts (“PDCs”) that include PCD tables as well as methods and apparatuses for manufacturing thereof. Some embodiments include a canister assembly that may be used in a high-pressure/high-temperature (“HPHT”) process or other heating process to manufacture the PCD tables and/or the PDCs.
Abstract:
Embodiments of methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) by partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments including at least one stress relieving partition are also disclosed.