摘要:
The invention is directed to a spectacle lens having a multifocal surface and a prescription surface. The prescription surface is a general aspheric surface without point and axis symmetry. Of the individual use conditions, at least the dioptric power is considered within an area when determining the geometry of the prescription surface. The prescription surface is provided exclusively for generating the dioptric power in the reference points and additionally for eliminating the increase of imaging errors.
摘要:
A lens element for progressive spectacles. The lens element has at least one near viewing zone and a distance viewing zone which have different focusing powers. Further, the lens element has a predetermined prismatic power. Furthermore, a vertical component of the predetermined prismatic power is realized at a first point of the lens element, and a horizontal component of the predetermined prismatic power is realized at a second point of the lens element. The present invention also relates to a method for producing a lens element.
摘要:
The current invention is directed to a method for designing an ophthalmic lens element, the method comprising the steps of determining a wavefront aberration of an eye in a reference plane, wherein the wavefront aberration of the eye can be described by a first series of polynomials of ascending order up to a first specific order and corresponding first coefficients; and determining a first vision correction of a second specific order to obtain an adapted ophthalmic lens element; determining at least one specified point over an aperture of the adapted ophthalmic lens element; determining a high-order wavefront aberration in the reference plane for each specified point of the adapted ophthalmic lens element, wherein the high-order wavefront aberration can be described by a third series of polynomials of ascending order above the second specific order up to and including the first specific order and corresponding third coefficients; determining a second vision correction of the second specific order for each of the specified points to obtain an optimized ophthalmic lens element based on the first vision correction up to and including the second specific order and based on combined first and third coefficients above the second specific order and up to and including the first specific order. Further, the current invention is directed to a method for manufacturing an ophthalmic lens element, a computer program product and a system for carrying out the methods.
摘要:
A micro-optical module includes a housing, at least one optoelectronic component, and an optoelectronic unit assigned thereto. The housing is partly embodied as an MID body, having a cavity and having a three-dimensional conductor structure in the cavity. The MID body includes an optical channel filled with a plastic waveguide.
摘要:
In a method for producing a lens (2), in particular a spectacle lens, central aberrations of an eye (1), to be corrected, of an ametropic person, such as sphere, cylinder and axis, are compensated. At least one refracting surface (9, 10) of the lens (2) is configured such that for at least one direction of view both a dioptric correction of the ametropia is performed and aberrations of higher order are corrected. Their effects on the visual acuity and/or the contrast viewing are a function of the size of the pupillary aperture (5) of the eye (1) to be corrected and are corrected by the lens (2).
摘要:
This disclosure relates to a spectacle lens family and methods of manufacturing the same, which in one embodiment has a multifocal property such that along a line between a far-vision reference point and a near-vision reference point spaced apart therefrom a mean spherical power changes continuously from a first value at the far-vision reference point to a second value at the near-vision reference point, wherein the spectacle lenses of the spectacle lens family each exhibit the same difference between the first value and the second value and nominal dioptric powers which are different from one another, wherein the shape of a first lens surface of the spectacle lenses is formed of a sphere and/or a torus to obtain the respective nominal dioptric power, wherein the spectacle lenses of the spectacle lens family have a basic shape of a second lens surface of the spectacle lens in common which provides the multifocal property, and wherein the shape of the second lens surface of each spectacle lens of the spectacle lens family deviates from said basic shape dependent on the respective nominal dioptric power to obtain, with different nominal dioptric powers of different spectacle lenses, a substantially similar distribution of the spherical and astigmatic aberrations in the field of view which are given by the multifocal property.
摘要:
A multifocal spectacle lens has two optically effective surfaces with powers in the far reference point from -4.0 dpt to +4.0 dpt in the stronger principal section. The spectacle lens has cylinders from 0.0 dpt to 4.0 dpt and an addition of 1.00 dpt to 3.00 dpt. The multifocal area is at least aspherical and can be differentiated continuously at least twice and is not axial symmetrical. The multifocal surface includes a far vision zone, a near vision zone and a progression zone lying between the near and far vision zones. The lens body is configured to incorporate a plurality of features within an elliptical region on the surface of the lens body extending 50 mm measured horizontally and 40 mm measured vertically from the measurement point. These features are all satisfied together within the elliptical region. One of the features is that the near-reference point is at most 21 mm perpendicularly below the far-reference point and displaced by about 2.5 mm toward the edge. Also, a principal viewing line interconnects the far-vision zone and the near-vision zone and the principal viewing line defines a curve swung toward the edge more or less in dependence upon the dioptric power of the far-vision zone and the addition. A predetermined region is formed in the progression zone on both sides of the principal viewing line wherein astigmatic deviation is less than 0.75 dpt.
摘要:
The invention is directed to a multifocal surface for a multifocal lens which, for a short progression zone between a far-vision zone and near-vision zone, has a large usable width of this zone and the near-vision zone, and for which the maximum value, which the surface astigmatism reaches on the multifocal surface, is less than the 1.1 multiple of the surface increment. Such a multifocal surface is obtained when this surface is configured as twice continuously differentiable and satisfies a combination of six features which relate to the distribution of surface astigmatism and mean surface refractive power across the multifocal surface.
摘要:
In various embodiments, a Hall sensor arrangement for the redundant measurement of a magnetic field may include a first Hall sensor on a top side of a first semiconductor substrate; a second Hall sensor on a top side of a second semiconductor substrate; a carrier having a top side and an underside; wherein the first Hall sensor is arranged on the top side of the carrier and the second Hall sensor is arranged on the underside of the carrier; and wherein the measuring area of the first Hall sensor projected perpendicularly onto the carrier at least partly overlaps the measuring area of the second Hall sensor projected perpendicularly onto the carrier.
摘要:
A module and a method for manufacturing a module are disclosed. An embodiment of a module includes a first semiconductor device, a frame arranged on the first semiconductor device, the frame including a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.