Abstract:
An uncoated titanium-based carbonitride cutting tool insert with superior plastic deformation resistance and wear resistance is provided. This is accomplished by heat treating the material in nitrogen atmosphere under conditions to obtain a nitrogen rich surface zone, also containing substantial amounts of binder phase.
Abstract:
Method of producing a sintered body comprising the steps of mixing one or more powders forming hard constituents with powders forming a binder phase comprising cobalt powder where the cobalt powder comprises cobalt having mainly a fcc-structure defined as the peak height ratio between the Co-fcc(200)/Co-hcp(101) being greater than or equal to about 3/2, as measured between the baseline and maximum peak height, measured by XRD with a 2θ/θ focusing geometry and Cu-Kα radiation. The present invention also relates to a ready-to-press powder comprising cobalt having mainly a fcc-structure and where the cobalt powder has a grain size (FSSS) of from about 0.2 to about 2.9 μm. The present invention also relates to sintered bodies made according to the method. The sintered bodied according to the present invention have reduced porosity and less crack formation.
Abstract:
The presently claimed invention relates to a method of making a PcBN cutting tool insert. The method includes the following steps: mixing raw material powders, (e.g., cBN, hBN, TiC, TiN, Ti(C,N), WC, W, C, Co, Co2Al9, Al AlN, Al2O3) with a liquid (e.g., ethanol) and an agent (e.g., polyethylene glycol, PEG) to form a homogeneous slurry with the desired composition; forming spherical powder agglomerates, typically 100 &mgr;m in diameter, preferably by spray drying; pressing said agglomerates to form a body of desired dimensions and density using conventional tool pressing technology; removing the agent from the powder at a suitable temperature and atmosphere; raising the temperature to 1000-1350° C. in vacuum; solid state sintering the body at 1000-1350° C. in vacuum, for 1-90 minutes to form a body with 35-55 vol % porosity; optionally, adding 0.5-1000 mbar of nitrogen to the sintering atmosphere at the hold time or during cooling; and HP/HT treating the porous body to form a dense body of desired shape and dimension.
Abstract:
The present invention relates to a sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in general finishing cutting operations requiring high deformation resistance in combination with relatively high toughness. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.
Abstract:
There is disclosed a method for edge rounding of cutting tool inserts, in combination with a high surface finish over the whole insert, of cemented carbide or titanium-based carbonitride alloys. An electrolytic method is used with an electrolyte which provides an even removal of both binder phase and hard constituent phases. The electrolyte comprises perchloric (HClO.sub.4) or sulphuric (H.sub.2 SO.sub.4) acid, in amounts >15 and
Abstract translation:公开了一种用于在硬质合金或钛基碳氮化物合金上切削刀具刀片的边缘圆化与整个刀片上的高表面光洁度相结合的方法。 电解方法与电解质一起使用,其提供粘结相和硬组分相的均匀去除。 在甲醇或其它合适的有机液体中,电解质包含量大于15和<50体积%的高氯酸(HClO4)或硫酸(H 2 SO 4)酸。 该方法比常规机械方法更容易控制,并且特别适用于提供非常小的边缘半径约10微米,并且在整个插入件上结合高表面光洁度,这不能通过机械或其它电解方法来制造。
Abstract:
A titanium-based carbonitride cutting tool insert with superior thermal shock resistance is disclosed. This is accomplished by sintering the material under conditions where the melting process is reversed. The melt forms in the center of the material first and the melting front propagates outwards towards the surface. This leads to minimal porosity and a macroscopic cobalt depletion towards the surface. The cobalt depletion, in turn, leads to a favorable compressive residual stress in the surface zone.
Abstract:
The present invention relates to a method for polishing coated cutting tools and wear parts, where at least the outer layer of the coating consists of TiN, TiC or Ti(C,N), to a high surface finish. An electrolytic method is used with an electrolyte consisting of perchloric (HClO.sub.4) or sulphuric (H.sub.2 SO.sub.4) acid, 2-50 volume %, in methanol or other organic liquid. The method is easier to control than conventional mechanical methods and renders a high surface finish over the whole coated part.
Abstract translation:本发明涉及一种用于抛光涂覆的切削工具和耐磨部件的方法,其中涂层的至少外层由TiN,TiC或Ti(C,N)组成,以达到高表面光洁度。 电解方法与甲醇或其他有机液体中的高氯酸(HClO4)或硫酸(H 2 SO 4)酸,2-50体积%的电解质一起使用。 该方法比常规机械方法更容易控制,并且在整个涂覆部分上具有高表面光洁度。
Abstract:
A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The Co content is 9-
Abstract:
A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-
Abstract:
A sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in light finishing cutting operations at high cutting speed. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.