Abstract:
An example method of interfacing with a hypervisor in a computing system is described. The computing system includes a processor having at least three hierarchical privilege levels including a third privilege level more privileged than a second privilege level, the second privilege level more privileged than a first privilege level. The method includes configuring, by the hypervisor executing at the third privilege level, the processor to trap reads to a debug communication channel (DCC) status register of the processor to the third privilege level; trapping, at the hypervisor, a read to the DCC status register by guest software executing in a virtual machine (VM) managed by the hypervisor, the guest software executing at the first or second privilege level; reading, at the hypervisor, a plurality of registers of the processor to obtain data stored by the guest software; and returning execution from the hypervisor to the guest software.
Abstract:
System and method for creating and managing trusted execution environments (TEEs) using different underlying hardware TEE mechanisms use a virtual secure enclave device which runs in a virtualized environment in a computer system. The device enables an enclave command transmitted to the virtual secure enclave device to be retrieved and parsed to extract an enclave operation to be executed. A TEE backend module is used to interact with a particular hardware TEE mechanism among those available in the computer system. The module ensures the enclave operation for the software process is executed by the particular hardware TEE mechanism, or the TEE scheme based on a particular hardware TEE mechanism.
Abstract:
A method of creating a new page table structure after first stage boot operations has completed but before handoff to a hypervisor occurs. Firmware page tables are reused and copied to a region of memory by a first-stage bootloader while the firmware is running, processed to have an expected multi-stage page table structure and desired access rights, and copied again to another region of memory by the first-stage bootloader after the first-stage bootloader has completed its booting operations and after the firmware has been quiesced.
Abstract:
A computer system provides a mechanism for assuring a safe, non-preemptible access to a private data area (PRDA) belonging to a CPU. PRDA accesses generally include obtaining an address of a PRDA and performing operations on the PRDA using the obtained address. Safe, non-preemptible access to a PRDA generally ensures that a context accesses the PRDA of the CPU on which the context is executing, but not the PRDA of another CPU. While a context executes on a first CPU, the context obtains the address of the PRDA. After the context is migrated to a second CPU, the context performs one or more operations on the PRDA belonging to the second CPU using the address obtained while the context executed on the first CPU. In another embodiment, preemption and possible migration of a context from one CPU to another CPU is delayed while a context executes non-preemptible code.
Abstract:
In a computer system operable at multiple hierarchical privilege levels, a “wait-for-event” (WFE) communication channel between components operating at different privilege levels is established. Initially, a central processing unit (CPU) is configured to to “trap” WFE instructions issued by a client, such as an operating system, operating at one privilege level to an agent, such as a hypervisor, operating at a more privileged level. After storing a predefined special sequence in a storage component (e.g., a register), the client executes a WFE instruction. As part of trapping the WFE instruction, the agent reads and interprets the special sequence from the storage component and may respond to the special sequence by storing another special sequence in a storage component that is accessible to the client. Advantageously, the client may leverage this WFE communication channel to establish low-overhead watchdog functionality for the client.
Abstract:
An example method of managing guest time for a virtual machine (VM) supported by a hypervisor of a virtualized host computer includes: configuring, by the hypervisor, a central processing unit (CPU) of the host computer to trap, to the hypervisor, access by guest code in the VM to a physical counter and timer of the CPU; configuring, by the hypervisor, the guest code in the VM to use the physical counter and timer of the CPU rather than a virtual counter and timer of the CPU; trapping, at the hypervisor, an access to the physical counter and timer by the guest code; and executing, by the hypervisor, the access to the physical counter and timer on behalf of the guest code while compensating for an adjustment of a system count of the physical counter and timer to maintain the guest time as scaled with respect to frequency of the physical counter and timer.
Abstract:
An example method of maintaining cache coherency in a virtualized computing system includes: trapping access to a memory page by guest software in a virtual machine at a hypervisor managing the virtual machine, where the memory page is not mapped in a second stage page table managed by the hypervisor; performing cache coherency maintenance for instruction and data caches of a central processing unit (CPU) in the virtualized computing system in response to the trap; mapping the memory page in the second stage page table with execute permission; and resuming execution of the virtual machine.
Abstract:
An example method of provisioning a virtual appliance to a virtualized computing system, comprising: deploying the virtual appliance to the virtualized computing system, the virtual appliance including a system partition, one or more disk images, and configuration data, the configuration data defining a virtual machine executable on each of a plurality of processor architectures, the system partition configured to boot on any one of the plurality of processor architectures; and booting the virtual appliance from the system partition.
Abstract:
A method of re-mapping memory regions for firmware run-time services to a virtual address space of a kernel executed on a processor, includes the steps of selecting a re-mapping policy for re-mapping the memory regions for the firmware run-time services, creating a new mapping according to the selected re-mapping policy, and making a call to an application programming interface exposed by the firmware to apply the new map and re-map the memory regions for the firmware to the virtual address space of the kernel.
Abstract:
An example method of initializing a plurality of processors in a hardware platform of computing device for use by system software executing on the hardware platform includes: parsing a descriptor table that has been loaded into memory from firmware to identify an original boot protocol for initializing at least one secondary processor of the plurality of processors; creating at least one mailbox structure in the memory associated with the at least one secondary processor; causing the at least one secondary processor to execute secondary processor initialization code stored in the memory, the secondary processor initialization code implementing a mailbox-based boot protocol that uses the at least one mailbox structure to initialize the at least one secondary processor; and modifying the descriptor table to identify the mailbox-based boot protocol for initializing the at least one secondary processor in place of the original boot protocol.