Abstract:
An implantable electroacupuncture device (IEAD) treats a medical condition of a patient through application of electroacupuncture (EA) stimulation pulses applied at a target tissue location, such as an acupoint. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates EA stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
A method of treating a mental disorder of a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the mental disorder. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
Abstract:
An implantable electroacupuncture device (IEAD) treats a medical condition of a patient through application of electroacupuncture (EA) stimulation pulses applied at a target tissue location, such as an acupoint. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates EA stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An implantable electroacupuncture device (IEAD) treats depression, bipolar disorder or Anxiety through application of stimulation pulses applied at acupoints GV20 and/or EXHN3. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An Implantable ElectroAcupuncture Device (IEAD) treats dyslipidemia conditions of a patient through application of stimulation pulses applied at acupoint ST40, or its underlying nerves saphenous and peroneal. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An Implantable ElectroAcupuncture System (IEAS) treats dyslipidemia or obesity through application of stimulation pulses applied at at least one of acupoints ST36, SP4, ST37, ST40, SP6, SP9, K16, or LR8, or underlying nerves saphenous or peroneal. The IEAS includes an hermetically-sealed implantable electroacupuncture (EA) device having at least two electrodes located outside of its housing. The housing contains a primary power source, pulse generation circuitry, and a sensor that wirelessly senses externally-generated operating commands. The pulse generation circuitry generates stimulation pulses as controlled, at least in part, by the operating commands sensed through the sensor. The stimulation pulses are applied to the specified acupoint or nerve through the electrodes in accordance with a specified stimulation regimen. Such stimulation regimen requires that the stimulation session be applied at a very low duty cycle not greater than 0.05.
Abstract:
A coin-sized implantable electroacupuncture (EA) device defines a stimulation paradigm, or stimulation regimen, that controls when EA stimulation pulses are applied to a selected acupoint, or other specified tissue location, to treat hypertension or nondipping. The stimulation regimen is applied when the patient is sleeping in order to minimize or mitigate the occurrence of nondipping or reverse dipping of the patient's blood pressure. In one embodiment, medical personnel, set a timing reference marker at the time of implant that defines how much time should elapse before a nighttime stimulation window opens that allows an EA stimulation session to be applied to the patient. In another embodiment, the patient sets the time when the nighttime stimulation window opens or when the EA stimulation session begins. Typically, an EA stimulation session is applied to the patient at a low duty cycle, e.g., only once a week during the nighttime.
Abstract:
An implantable electroacupuncture device (IEAD) treats an erectile dysfunction condition of a patient through application of stimulation pulses applied at a target tissue location underlying, or in the vicinity of, at least one of acupoints BL52, BL23 or GV4. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
A method comprises generating, by an implantable stimulator, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a patient. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
Abstract:
An exemplary method includes generating, by an electroacupuncture device implanted beneath a skin surface of a patient, stimulation sessions at a duty cycle that is less than 0.05, and applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a location within the patient. A primary battery located within the electroacupuncture device and having an internal impedance greater than 5 ohms is configured to provide operating power to pulse generation circuitry within the electroacupuncture device.