Abstract:
Techniques described herein relate to reducing co-channel interference between macrocells and small cells in a heterogeneous network environment. Macrocells and small cells may dynamically select from among multiple interfaces (e.g., an X2 or S1 interface) to communicate FeICIC control communications. In one implementation, the selection may be based on the round trip delay (RTD) time between pairs of nodes. Thus, the macrocells and small cells nodes may dynamically select either the X1 or S1 interface based on whichever of these interfaces has the smallest RTD to the destination radio node.
Abstract:
Examples are disclosed that facilitate using enhanced cell global identifier to effectively manage the handover of cellular communication services for a mobile device in an LTE network from a source, or serving, evolved Node B (eNB) to a target home evolved Node B (HeNB). The increased use of HeNBs to provide service to mobile devices creates issues for the management of tracking area identifiers associated with the eNB and HeNBs and may increase tracking area update (TAU) signaling in the cellular network. The handover of a mobile device moving from an eNB coverage area to a neighboring HeNB coverage area is managed without use of a tracking area identifier by using enhanced cell global identifiers assigned to the respective HeNB. The following provides examples for minimizing the burden on the network devices to manage the administration of TAIs and that may reduce TAU signaling in the cellular network.
Abstract:
A device may include a processor configured to determine that a user device is within a coverage area of a small cell connected to a base station associated with an application service; determine that the user device is not a member of the small cell; identify a network slice for the application service; determine whether a network services subscription for the small cell includes the network slice; perform, when the network services subscription for the small cell includes the network slice, an attachment procedure to the small cell; receive authorization for attaching to the small cell and accessing the application service via the network slice; and initiate a network session on the network slice.
Abstract:
An improved lawful intercept (LI) infrastructure is described. In response to a valid LI provisioning request, a subscriber management component statically allocates a user equipment (UE) subject to the LI provisioning request to an edge location comprising a high-speed gateway and a Mediation and Delivery Function (MDF), which coordinates the delivery of intercepted communications. The subscriber management component maintains this allocation for the life of the LI provisioning request and reverses the UE to a dynamic gateway allocation scheme when the LI provisioning request ends. As a result, only a subset of edge locations must be equipped with MDFs, and the handover is transparent to the UE.
Abstract:
A device within a small cell may establish a first secure communication channel between the device and a network device based on a first type of encryption. The device within the small cell may transmit data between the small cell and a core network via the first secure communication channel. The device within the small cell may receive information associated with a second type of encryption, wherein the second type of encryption is different from the first type of encryption. The device within the small cell may terminate the first secure communication channel. The device within the small cell may establish a second secure communication channel between the device and the network device based on the information associated with the second type of encryption. The device within the small cell may transmit further data between the small cell and the core network via the second secure communication channel.
Abstract:
A system described herein may provide a technique for intercepting user equipment (“UE”) traffic based on granular characteristics specified by a law enforcement agency (“LEA”) or other authorized requestor. The granular characteristics may indicated a content type, keywords, and/or other characteristics that the requestor may desire to intercept. Traffic attributes, which may be different from the granular characteristics, may be identified based on the granular characteristics. Network components suited to intercepting traffic having the identified attributes may be provisioned to intercept the traffic.
Abstract:
A system and method provide for receiving, at a radio access network (RAN), a radio resource connection (RRC) connection request from user equipment (UE) in a disconnected/idle state; allocating signaling radio bearer (SRB) resources to the UE; sending an initial UE message to a core network; receiving an initial context set-up from the core network; establishing an RRC session with the UE in an RRC connected state; storing the context information; detecting inactivity in the RRC session while the UE is in the RRC connected state; suspending the RRC session and transitioning the UE device from the RRC connected state to an RRC inactive state based on the inactivity; determining a congested/overloaded state in the RAN; receiving an RRC resume request from the UE; and determining, using the stored context information, whether the UE is to be granted prioritized access to the RAN and transitioned to the RRC connected state.
Abstract:
A first cell device obtains, from a second cell device, multicast information associated with the second cell device, where a first wireless coverage area associated with the first cell device at least partially overlaps a second wireless coverage area associated with the second cell device. The first cell device transmits the multicast information to an element management system, and receives, from the element management system, an instruction, generated based at least on the multicast information, to not use one or more subframes, associated with a multicast transmission session associated with the second cell device, to transmit during the multicast transmission session. The first cell device determines, after receiving the instruction, that the multicast transmission session has been initiated, and causes the first cell device to not use the one or more subframes to transmit during the multicast transmission session associated with the second cell device.
Abstract:
A system and method provide for receiving, at a radio access network (RAN), a radio resource connection (RRC) connection request from user equipment (UE) in a disconnected/idle state; allocating signaling radio bearer (SRB) resources to the UE; sending an initial UE message to a core network; receiving an initial context set-up from the core network; establishing an RRC session with the UE in an RRC connected state; storing the context information; detecting inactivity in the RRC session while the UE is in the RRC connected state; suspending the RRC session and transitioning the UE device from the RRC connected state to an RRC inactive state based on the inactivity; determining a congested/overloaded state in the RAN; receiving an RRC resume request from the UE; and determining, using the stored context information, whether the UE is to be granted prioritized access to the RAN and transitioned to the RRC connected state.
Abstract:
A system and method provide for receiving, at a radio access network (RAN), a radio resource connection (RRC) connection request from user equipment (UE) in a disconnected/idle state; allocating signaling radio bearer (SRB) resources to the UE; sending an initial UE message to a core network; receiving an initial context set-up from the core network; establishing an RRC session with the UE in an RRC connected state; storing the context information; detecting inactivity in the RRC session while the UE is in the RRC connected state; suspending the RRC session and transitioning the UE device from the RRC connected state to an RRC inactive state based on the inactivity; determining a congested/overloaded state in the RAN; receiving an RRC resume request from the UE; and determining, using the stored context information, whether the UE is to be granted prioritized access to the RAN and transitioned to the RRC connected state.