Abstract:
One or more devices may receive an instruction to generate an index for a customer associated with a base station and may generate the index based on receiving the instruction. The index may include one or more spaces to store a corresponding one or more access identifiers (IDs) used to allow a user device to connect to the base station. The one or more devices may receive an instruction to add an access ID to the index; generate the access ID based on a format of the access ID, a customer type, a customer ID, or a space ID; store the access ID in one of the one or more spaces of the index; and provide the access ID to the user device and the base station. The access ID may permit the user device to connect to the base station to access a network via the base station.
Abstract:
Examples are disclosed that facilitate using enhanced cell global identifier to effectively manage the handover of cellular communication services for a mobile device in an LTE network from a source, or serving, evolved Node B (eNB) to a target home evolved Node B (HeNB). The increased use of HeNBs to provide service to mobile devices creates issues for the management of tracking area identifiers associated with the eNB and HeNBs and may increase tracking area update (TAU) signaling in the cellular network. The handover of a mobile device moving from an eNB coverage area to a neighboring HeNB coverage area is managed without use of a tracking area identifier by using enhanced cell global identifiers assigned to the respective HeNB. The following provides examples for minimizing the burden on the network devices to manage the administration of TAIs and that may reduce TAU signaling in the cellular network.
Abstract:
One or more devices may receive information that identifies a format of an identifier of a network device. The format of the identifier may indicate a portion of the identifier that identifies a type of the network device. The one or more devices may receive the identifier of the network device based on a user device connecting with the network device to communicate via the network device; determine the type of the network device connected to the user device based on the portion of the identifier and a format of the identifier that identifies the type of network device; and execute a processing instruction based on the type of network device connected to the user device.
Abstract:
The operational status of devices (such as routers, gateways, etc.) may be determined automatically, without the need for a user to look up status lights or sounds in a manual. A particular device may be automatically identified (e.g., by image recognition techniques), and the operational status may also be automatically identified. For example, a user device may capture an image, video, and/or audio of the device, and may automatically identify an operational status of the device based on the captured image, video, and/or audio. A message and/or suggested set of actions may also be presented to the user, which may indicate the operational status and instructions for one actions that the user may perform to improve the operational status of the device.
Abstract:
Examples are disclosed that facilitate using enhanced cell global identifier to effectively manage the handover of cellular communication services for a mobile device in an LTE network from a source, or serving, evolved Node B (eNB) to a target home evolved Node B (HeNB). The increased use of HeNBs to provide service to mobile devices creates issues for the management of tracking area identifiers associated with the eNB and HeNBs and may increase tracking area update (TAU) signaling in the cellular network. The handover of a mobile device moving from an eNB coverage area to a neighboring HeNB coverage area is managed without use of a tracking area identifier by using enhanced cell global identifiers assigned to the respective HeNB. The following provides examples for minimizing the burden on the network devices to manage the administration of TAIs and that may reduce TAU signaling in the cellular network.
Abstract:
The operational status of devices (such as routers, gateways, etc.) may be determined automatically, without the need for a user to look up status lights or sounds in a manual. A particular device may be automatically identified (e.g., by image recognition techniques), and the operational status may also be automatically identified. For example, a user device may capture an image, video, and/or audio of the device, and may automatically identify an operational status of the device based on the captured image, video, and/or audio. A message and/or suggested set of actions may also be presented to the user, which may indicate the operational status and instructions for one actions that the user may perform to improve the operational status of the device.
Abstract:
Examples are disclosed that facilitate using enhanced cell global identifier to effectively manage the handover of cellular communication services for a mobile device in an LTE network from a source, or serving, evolved Node B (eNB) to a target home evolved Node B (HeNB). The increased use of HeNBs to provide service to mobile devices creates issues for the management of tracking area identifiers associated with the eNB and HeNBs and may increase tracking area update (TAU) signaling in the cellular network. The handover of a mobile device moving from an eNB coverage area to a neighboring HeNB coverage area is managed without use of a tracking area identifier by using enhanced cell global identifiers assigned to the respective HeNB. The following provides examples for minimizing the burden on the network devices to manage the administration of TAIs and that may reduce TAU signaling in the cellular network.
Abstract:
Examples are disclosed that facilitate using enhanced cell global identifier to effectively manage the handover of cellular communication services for a mobile device in an LTE network from a source, or serving, evolved Node B (eNB) to a target home evolved Node B (HeNB). The increased use of HeNBs to provide service to mobile devices creates issues for the management of tracking area identifiers associated with the eNB and HeNBs and may increase tracking area update (TAU) signaling in the cellular network. The handover of a mobile device moving from an eNB coverage area to a neighboring HeNB coverage area is managed without use of a tracking area identifier by using enhanced cell global identifiers assigned to the respective HeNB. The following provides examples for minimizing the burden on the network devices to manage the administration of TAIs and that may reduce TAU signaling in the cellular network.