Abstract:
A call session control function (“CSCF”), of an Internet Protocol Multimedia Subsystem (“IMS”) core network, may receive a set of authentication credentials that do not include IMS authentication credentials; and may use the set of authentication credentials, which do not include IMS authentication credentials, to authenticate a user device for the IMS core network.
Abstract:
A reporting server receives reports on unicast and/or broadcast multimedia content items being accessed by respective user equipment (UE) devices through a network. The reporting server determines, for each multimedia content item, a number of UE devices that are accessing the multimedia content item and whether it is being unicast or broadcast. The reporting server ranks the multimedia content items by the number of UE devices accessing each item. In several disclosed examples, a broadcast video provisioning system switches unicast transmissions to broadcast transmissions based on the ranked list, based on this ranking and possibly on the available unicast and broadcast bandwidth.
Abstract:
A mobile device may receive user input for requesting personal information for a subject in proximity of a mobile device and based on the user input, selecting one of available functions. The functions may include a first function for obtaining personal information using a first identifier. The functions may also include a second function for obtaining the personal information using the first identifier. The mobile device may output the personal information as an image to a display or as speech to speaker.
Abstract:
A method, a network device, and a non-transitory computer-readable storage medium are described in relation to an radio access management service. The radio access management service may include calculating a predicted total resource allocation value for a prospective access and transmission grant associated with a prospective time window, and a value indicating a number of end devices that can be supported. The service may generate and transmit an access and transmission grant message directed to end devices, based on the value, in which the message may include both random access response information and contention resolution information.
Abstract:
At least one network device receives a first network address of a first small cell wireless station that has been registered as an authorized wireless station for network access to a target network. The at least one network device adds the first network address of the first small cell wireless station to a small cell wireless station data structure that lists a plurality of network addresses associated with a plurality of authorized small cell wireless stations, and validates, upon power-up of the first small cell wireless station, the first small cell wireless station against the small cell wireless station data structure to selectively establish a first tunnel, between the first small cell wireless station and a gateway connected to the target network, to enable network access to the target network.
Abstract:
A system may use optical character recognition (“OCR”) techniques to identify license plates or other textual information associated with vehicles. Based on this OCR information, the system may determine additional information, such as users associated with the vehicles. The system may further obtain other information, such as history information associated with the vehicles and/or the users (e.g., via an “opt-in” data collection service). Ad content may be selected based on trends associated with the users and/or vehicles, and may be presented via “smart” billboards (e.g., billboards that may dynamically display different content).
Abstract:
Systems described herein ensure authorized communications between application servers and machine-type communications (MTC) devices. The systems store a subscriber profile for an MTC device, the subscriber profile including application server (AS) configuration information designating application servers that are authorized to connect with the MTC device. The systems receive a non-IP data delivery (NIDD) registration request from an application server, wherein the NIDD registration request includes an identifier for the MTC device. The systems obtain, from the application server, a first identifier for the application server, and retrieve, based on the NIDD registration request, the AS configuration information from the subscriber profile. The systems determine if there is a match between the AS configuration information and the first identifier for the application server, and configure a binding of the application server and an access point name (APN) for the MTC device in response to determining that there is a match.
Abstract:
Systems described herein ensure authorized communications between application servers and machine-type communications (MTC) devices. The systems store a subscriber profile for an MTC device, the subscriber profile including application server (AS) configuration information designating application servers that are authorized to connect with the MTC device. The systems receive a non-IP data delivery (NIDD) registration request from an application server, wherein the NIDD registration request includes an identifier for the MTC device. The systems obtain, from the application server, a first identifier for the application server, and retrieve, based on the NIDD registration request, the AS configuration information from the subscriber profile. The systems determine if there is a match between the AS configuration information and the first identifier for the application server, and configure a binding of the application server and an access point name (APN) for the MTC device in response to determining that there is a match.
Abstract:
A security device may be configured to receive information regarding traffic that has been outputted by a particular user device; and compare the information regarding the traffic to security information. The security information may include device behavior information, traffic policy information, or device policy information. The security device may determine, based on the comparing, that a security threat exists with regard to the traffic; and take, based on determining that the security threat exists, remedial action with respect to the traffic. Taking the remedial action may include preventing the traffic from being forwarded to an intended destination associated with the traffic, providing an alert, regarding the security threat, to the particular user device, or providing an alert, regarding to the security threat, to another device.
Abstract:
Femtocells are often used to extend the coverage of wireless telecommunication networks, but do not typically incorporate mechanisms that allow their location to be easily ascertained. As described herein, a system may determine the locations of femtocells, based on the locations of user devices that attach to, detach from, handover between, and/or detect the femtocells. A map (such as a three-dimensional map) may be generated based on the determined locations of femtocells. The locations of femtocells may be used, for example, in emergency broadcast situations, in order to ensure that messages are distributed as completely as possible in a given region.