AGENT TRAJECTORY PREDICTION USING TARGET LOCATIONS

    公开(公告)号:US20240149906A1

    公开(公告)日:2024-05-09

    申请号:US17387852

    申请日:2021-07-28

    Applicant: Waymo LLC

    CPC classification number: B60W60/001 G06N3/02 B60W2420/42 B60W2554/4049

    Abstract: Methods, computer systems, and apparatus, including computer programs encoded on computer storage media, for predicting future trajectories for an agent in an environment. A system obtains scene context data characterizing the environment. The scene context data includes data that characterizes a trajectory of an agent in a vicinity of a vehicle in an. environment up to a current time point. The system identifies a plurality of initial target locations in the environment. The system further generates, for each of a plurality of target locations that each corresponds to one of the initial target locations, a respective predicted likelihood score that represents a likelihood that the target location will be an intended final location for a future trajectory of the agent starting from the current time point. For each target location in a first subset of the target locations, the system generates a predicted future trajectory for the agent that is a prediction of the future trajectory of the agent given that the target location is the intended final location for the future trajectory. The system further selects, as likely future trajectories of the agent starting from the current time point, one or more of the predicted future trajectories.

    STRUCTURED MULTI-AGENT INTERACTIVE TRAJECTORY FORECASTING

    公开(公告)号:US20230406361A1

    公开(公告)日:2023-12-21

    申请号:US18335920

    申请日:2023-06-15

    Applicant: Waymo LLC

    Abstract: Methods, systems, and apparatus for generating trajectory predictions for one or more agents. In one aspect, a system comprises one or more computers configured to obtain scene context data characterizing a scene in an environment at a current time point, where the scene includes multiple agents. The one or more computers process the scene context data using a marginal trajectory prediction neural network to generate a respective marginal trajectory prediction for each of the plurality of agents that defines multiple possible trajectories for the agent after the current time point and a respective likelihood score for each of the multiple possible future trajectories. The one or more computers can generate graph data based on the respective marginal trajectory predictions, and the one or more computers can process the graph data using a graph neural network to generate a joint trajectory prediction output for the multiple agents in the scene.

    Agent trajectory prediction using target locations

    公开(公告)号:US11987265B1

    公开(公告)日:2024-05-21

    申请号:US17387852

    申请日:2021-07-28

    Applicant: Waymo LLC

    CPC classification number: B60W60/001 G06N3/02 B60W2420/42 B60W2554/4049

    Abstract: A system obtains scene context data characterizing the environment. The scene context data includes data that characterizes a trajectory of an agent in a vicinity of a vehicle up to a current time point. The system identifies a plurality of initial target locations, and generates, for each of a plurality of target locations that each corresponds to one of the initial target locations, a respective predicted likelihood score that represents a likelihood that the target location will be an intended final location for a future trajectory of the agent. For each target location in a first subset of the target locations, the system generates a predicted future trajectory for the agent given that the target location is the intended final location for the future trajectory. The system further selects, as likely future trajectories of the agent, one or more of the predicted future trajectories.

    Conditional agent trajectory prediction

    公开(公告)号:US11926347B2

    公开(公告)日:2024-03-12

    申请号:US17514259

    申请日:2021-10-29

    Applicant: Waymo LLC

    CPC classification number: B60W60/00272 B60W60/00274 G06N3/045

    Abstract: Methods, computer systems, and apparatus, including computer programs encoded on computer storage media, for performing a conditional behavior prediction for one or more agents. The system obtains context data characterizing an environment. The context data includes data characterizing a plurality of agents, including a query agent and one or more target agents, in the environment at a current time point. The system further obtains data identifying a planned future trajectory for the query agent after the current time point, and for each target agent in the set, processes the context data and the data identifying the planned future trajectory using a first neural network to generate a conditional trajectory prediction output that defines a conditional probability distribution over possible future trajectories of the target agent after the current time point given that the query agent follows the planned future trajectory for the query agent after the current time point.

    PREDICTING THE FUTURE MOVEMENT OF AGENTS IN AN ENVIRONMENT USING OCCUPANCY FLOW FIELDS

    公开(公告)号:US20220301182A1

    公开(公告)日:2022-09-22

    申请号:US17698930

    申请日:2022-03-18

    Applicant: Waymo LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting the future movement of agents in an environment. In particular, the future movement is predicted through occupancy flow fields that specify, for each future time point in a sequence of future time points and for each agent type in a set of one or more agent types: an occupancy prediction for the future time step that specifies, for each grid cell, an occupancy likelihood that any agent of the agent type will occupy the grid cell at the future time point, and a motion flow prediction that specifies, for each grid cell, a motion vector that represents predicted motion of agents of the agent type within the grid cell at the future time point.

Patent Agency Ranking