摘要:
Spatially dependent colorant interaction effects are identified and isolated from other aspects of spatially dependent colorant appearance nonuniformities. A decorrelating function for compensating for the identified spatially dependent colorant interaction effects is determined. Spatially dependent single colorant compensating functions for compensating for the other aspects of the spatially dependent colorant appearance nonuniformities may also be determined. Image data is processed through the decorrelating function, thereby generating colorant values that are compensated for spatially dependent colorant interaction effects. Optionally, image data is also processed through the spatially dependent single colorant compensating functions, thereby generating colorant values that are compensated for both aspects of colorant appearance nonuniformities. The two kinds of compensating functions may be determined, calibrated and/or stored at different spatial and temporal frequencies or resolutions. One or both of the compensating functions may be employed to maintain consistency across a plurality of rendering devices (e.g., marking engines).
摘要:
A method for determining a response to misalignment of a camera monitoring a desired area includes acquiring temporal related frames from the camera including a reference frame. A pixel location is determined of a reference object from the frames. Using the pixel location of the reference object, a displacement of the camera between a current frame and the reference frame is determined. For the displacement exceeding a first threshold, a new displacement of the camera is measured by introducing at least one additional object to a camera field of view and comparing the new displacement to a second threshold. For the new displacement not exceeding the second threshold, the camera is recalibrated using a determined pixel location and a physical location of the at least one additional object. For the new displacement exceeding the second threshold, notification is provided of a misalignment to an associated user device.
摘要:
What is disclosed is a novel system and method for mapping out-of-gamut colors to a device's gamut to improve image quality in a color document reproduction device involves performing the following. First, an out-of-gamut color xi, which is intended to be mapped to a boundary surface of a color gamut of a color marking device, is selected. A gamut mapping function is also selected. The selected gamut mapping function is intended to be applied to the selected out-of-gamut color point. At least one performance attribute is then selected for the color marking device and a multi-objective cumulative cost JT is determined based upon a combination of costs Jgm and Js. The multi-objective cumulative cost JT is then iteratively driven to a minimum. Once the minimum has been determined, a gamut mapping of the selected out-of-gamut color can then be performed using the minimized multi-objective cumulative cost. Various embodiments are disclosed.
摘要:
What is disclosed is a novel system and method for determining printer performance in terms of image quality (IQ) on-paper using on-belt measurements. First, image noise is measured via sensing of single-separation device-dependent colors on an imaging member for a target marking device. Such single-separation device-dependent colors, in one embodiment, comprise cyan, magenta, yellow and black. A predictive correlation model is used to project the image noise of the single-separation device-dependent colors when printed on a substrate. A noise prediction model is used to estimate image noise performance values of multi-separation device-dependent colors on a substrate from the projected single-separation device-dependent colors on a substrate. In one embodiment, the predictive correlation model comprises a separation-dependent polynomial equation. The estimated image noise performance values on a substrate are used to determine image quality metric of the target marking device.
摘要:
What is disclosed is a system and method for improving image quality of a color of interest using a cluster model in a color printing system involving the following. First, one or more image quality attributes are selected for a target color marking device. A cluster model is received which comprises a plurality of clusters with each cluster having an associated transform. The cluster model is used to estimate an image quality parameter. The image quality parameter is used to select colorant sets and thereby to improve the image quality in the marking device. Various embodiments of the use of cluster models are disclosed.
摘要:
A method for optimally using color patch codes or color barcodes for transmitting machine-readable information, via device characterization, is disclosed to comprise characterizing a printing device and optionally a sensing device for identifying a number of recognizably spaced printer output colors; deriving a code book, by relating the printer output colors and their corresponding input values to information elements; and using the code book for encoding and decoding the information to be transmitted. The recognizably spaced printer output colors are in terms of a color space relevant to a color patch code or color barcode sensing device, and are related to the corresponding marking device input values.
摘要:
What is disclosed is a novel system and method for determining a printer metric in terms of image quality (IQ) over a large complex set of conditions based upon measurements taken over a small simple set of conditions while compensating for printer drift. The present system and method effectively utilizes a predictive model that predicts noise measurements of multi-separations from those of single-separation colors and/or a subset of the multi-separations. Because a model is used to comprehend the metric over the entire gamut, the number of patches is reduced. This reduction enables the method to be used within a machine to dynamically characterize the device's image quality metric. Various embodiments have been disclosed.
摘要:
Methods and systems are disclosed which are capable of efficiently performing color management of a variable gloss color printing system. The methods and systems select at least one set of the linear color values corresponding to the color profile for the printing device (at the nominal gloss condition). The linear color values selected comprise those obtained from color values corresponding to each node of the color profile at the nominal gloss condition. In a colorimetric embodiment, the linear color values can comprise: tristimulus values XYZ; red, green, blue (RGB); or luminance component Y, and two chromatic components C1 and C2 (YCC). In a reflectance embodiment, the linear color values comprise reflectance spectra. This exemplary method adds an offset term to each of the linear color values to produce a corresponding set of modified linear color values, and generates a color profile for the printing device at the desired gloss condition based on the modified linear color values.
摘要:
What is disclosed is a system and method for improving image quality of a color of interest using a cluster model in a color printing system involving the following. First, one or more image quality attributes are selected for a target color marking device. A cluster model is received which comprises a plurality of clusters with each cluster having an associated transform. The cluster model is used to estimate an image quality parameter. The image quality parameter is used to select colorant sets and thereby to improve the image quality in the marking device. Various embodiments of the use of cluster models are disclosed.
摘要:
What is disclosed is a novel system and method for updating a cluster model for color control. In one example embodiment, a cluster model is received and analyzed to identify clusters therein. Each of the identified clusters has an associated transform. Thereafter, in response to a threshold event having occurred, a critical cluster is identified and a critical color is identified from the cluster. Steps for identifying a critical color are more fully described herein. A selected number of patches is then printed in each of the critical colors and color measurements are obtained from the printed patches using, for instance, a colorimeter or spectrophotometer. If the color measurements have deviated beyond a defined threshold, then update the cluster model by: updating the transform associated with the cluster; redefining the number of clusters; redefining a center of any of the clusters; or redefining a boundary of the clusters.