Abstract:
A high efficiency plasma display panel (PDP) has a discharge cell structure in which front discharge electrodes and rear discharge electrodes are optimally positioned to maximize discharge efficiency and greatly increase light transmittance. The PDP includes: a transparent front substrate; a rear substrate arranged in parallel with the front substrate; front barrier ribs made of a dielectric material and located between the front substrate and the rear substrate so as to define discharge cells together with the front substrate and the rear substrate; front discharge electrodes located in the front barrier ribs such that they surround the discharge cells and are separated from the front substrate; rear discharge electrodes located in the front barrier ribs such that they surround the discharge cells and are separated from the front discharge electrodes; rear barrier ribs located between the front barrier ribs and the rear substrate so as to define the discharge cells together with the front barrier ribs, the front substrate and the rear substrate; fluorescent layers located in spaces defined by the rear barrier ribs and the rear substrate; and a discharge gas deposited in the discharge cells.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Also, external light absorbing members are formed between the second substrate and the barrier ribs layer at areas corresponding to locations of the non-discharge regions.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Also, external light absorbing members are formed between the second substrate and the barrier ribs layer at areas corresponding to locations of the non-discharge regions.
Abstract:
A plasma display panel includes a first substrate, and a second substrate opposing the first substrate. A plurality of address electrodes are formed on the first substrate along a first direction, and a plurality of barrier ribs are mounted between the first and second substrates and defining a plurality of discharge cells that are formed into a plurality of rows along a second direction which is substantially perpendicular to the first direction. Non-discharge regions are formed between the respective rows of the discharge cells, and a plurality of transverse barrier ribs are formed along the second direction respectively within the non-discharge regions. Each of a plurality of phosphor layers is formed in a respective one of the discharge cells. Display electrodes are formed on the second substrate. At least one end of each of the transverse barrier ribs includes an annular branched segment.
Abstract:
Disclosed is a PDP driving method and a plasma display device for providing stable discharge characteristics by varying gradients of PDP driving waveforms according to the external temperature of the PDP. A protection film of MgO reduces the secondary emission coefficient as the temperature is reduced. In order to compensate for the reduction, the external temperature is measured by an external temperature sensor, and the gradients in a falling period and/or the rising period during a reset period of a driving voltage waveform are modified according to the measured external temperature. In detail, the gradients in the falling period and/or the rising period of the reset period are varied to be less steep when the measured temperature is reduced to below a predetermined level such as freezing or −10 degrees C.
Abstract:
A plasma display device includes a plasma display panel having a front substrate and a rear substrate spaced apart from the front substrate to form a plurality of discharge spaces, and a chassis base facing the plasma display panel. The plasma display device includes at least one channel adapted to allow air to flow therethrough to improve heat removal efficiency, the at least one channel being arranged between the rear substrate and the chassis base.
Abstract:
An optical sheet includes a base film in which light is incident from a lower side, a plurality of prism patterns and a diffusion member. The prism patterns are protruded to be spaced apart from each other on the base film to enhance the front luminance of light incident from the lower side of the base film. The diffusion member is disposed between prism patterns to have a diffusion surface in parallel with the base film. The diffusion member includes a plurality of diffusion dots capable of enhancing the luminance uniformity of light incident from the lower side of the base film. Thus, front luminance and luminance uniformity may be enhanced due to a juxtaposition of the prism patterns and the diffusion portion, and the viewing angle of the LCD device may be enhanced.
Abstract:
A plasma display panel includes first and second substrates opposing one another. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first and second substrates defining discharge cells and non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates passing through centers of the discharge cells. Further, the discharge cells are formed such that ends thereof increasingly decrease in width as a distance from centers of the discharge cells is increased. The discharge sustain electrodes include bus electrodes that extend perpendicular to the address electrodes and outside areas of the discharge cells but across areas of the non-discharge regions, and protrusion electrodes formed extending from each of the bus electrodes.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas that pass through centers of adjacent discharge cells and discharge cell ordinates that pass through centers of adjacent discharge cells, the non-discharge regions having a width that is at least as large as a width of an end of barrier ribs. Also, a transverse barrier rib is formed extending between each pair of adjacent rows of discharge cells.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Further, each of the discharge cells is formed such that ends thereof increasingly decrease in width along a direction the discharge sustain electrodes are formed as a distance from a center of the discharge cells is increased along a direction the address electrodes are formed.