Abstract:
Methods of forming coatings comprising a polycationic peptide for medical devices are disclosed. Also disclosed is a coating comprising a polycationic peptide.
Abstract:
A device for closing an opening in a wall of a body lumen includes a closure element with a first flange and a second flange. Both the first flange and the second flange may have a delivery cross-sectional dimension and a deployed cross-sectional dimension. The device for closing an opening further includes a first coupler element disposed on the first flange and a second coupler element disposed on the second flange, the first and second coupler elements cooperating to couple the first flange to the second flange.
Abstract:
A device for penetrating occlusive material in a body lumen is provided that may include an outer tube, an intermediate tube, and an inner tube. At least a portion of the intermediate tube may be moveably disposed within the outer tube. At least a portion of the inner tube may be moveably disposed within the intermediate tube. A first dynamic member may be operably connected to the intermediate tube and the inner tube. The first dynamic member may be configured to penetrate the occlusive material and to anchor the first dynamic member within the occlusive material. A second dynamic member may be operably connected to the outer tube and the intermediate tube. The second dynamic member may be configured to penetrate the occlusive material and to anchor the second dynamic member within the occlusive material and to support movement of the first dynamic member.
Abstract:
A needle removal device is provided for removing needles from suturing devices and/or systems. In an embodiment, the needle removal device may be intended for use with a suturing device having one or more needle lumens. The needle removal device may include a first member having a first plurality of needle receptacles extending therethrough. The first needle receptacles may be configured and positioned to correspond to one or more of the one or more needle lumens of the suturing device. The needle removal device may also include a second member having a second plurality of needle receptacles extending therethrough. At least one of the first member or the second member may be moveable between a first position, wherein the first needle receptacles and the second needle receptacles are substantially aligned, and a second position, wherein the first needle receptacles and the second needle receptacles substantially unaligned.
Abstract:
A device for engaging tissue may include a generally annular-shaped body defining a plane and disposed about a central axis extending substantially normal to the plane. The body may be movable from a substantially planar configuration lying generally in the plane towards a transverse configuration extending out of the plane. The body may include a plurality of looped elements including alternating inner and outer curved regions. The inner curved regions may define an inner periphery of the body and the outer curved regions may define an outer periphery of the body in the planar configuration. A plurality of tines may extend from the outer curved regions. The tines may be oriented generally towards the central axis in the planar configuration and generally parallel to the central axis in the transverse configuration. The tines may extend beyond the central axis without passing through the central axis so as to collectively form a central lumen about the central axis in the planar configuration.
Abstract:
Hemostatic products with improved stability are prepared from crosslinked chitosan hemostatic compositions. The crosslinked chitosan hemostatic compositions have improved stability and can be prepared into a variety of medical devices in various shapes and sizes so as to be usable for inhibiting blood flow and ooze from substantially any type of bleeding site. For example, the chitosan compositions can be prepared into hemostatic gauze pads, bandages, wrappings, wound dressings, wound coverings, wound dressings, incision dressings, sealers, sheets, rolls, combinations thereof, and the like.
Abstract:
Implantable hemostatic products with improved stability are prepared from crosslinked chitosan hemostatic compositions. The crosslinked chitosan hemostatic compositions have improved stability and can be prepared into a variety of implantable medical devices in various shapes and sizes so as to be usable for inhibiting blood flow and ooze from substantially any type of internal bleeding site. For example, the chitosan compositions can be prepared into hemostatic gauze pads, bandages, dressings, wound plugs, incision plugs, arteriotomy plugs, tissue fillers, sealers, sheets, rolls, combinations thereof, and the like.
Abstract:
Various embodiments of the present invention provide a medical device comprising at least one blood-contacting surface comprising a porous hydrophobic polymer substrate, wherein at least a portion of the at least one blood-contacting surface comprises a hemocompatible polymer substrate. One embodiment of the present invention relates to the providing of expanded poly(tetrafluoroethylene) with one or more complexes of heparin, typically containing heparin in combination with a hydrophobic counter ion. The hemocompatible substance is dissolved in a mixture of solvents in which a first solvent wets the polymer substrate to be coated and the second solvent enhances the solubility of the hemocompatible substance material in the solvent mixture. Typical first solvents wetting a hydrophobic polymer substrate include non-polar such as hydrocholorofluorocarbons. Typical second solvents include polar solvents such as organic alcohols and ketones. Azeotropic mixtures of the second solvent in the first solvent are used in some embodiments of the present invention although second solvents may be employed in a range of concentration ranges from less than 0.1% up to saturation.