摘要:
The disclosure is directed to techniques for automatic segmentation of a region-of-interest (ROI) video object from a video sequence. ROI object segmentation enables selected ROI or “foreground” objects of a video sequence that may be of interest to a viewer to be extracted from non-ROI or “background” areas of the video sequence. Examples of a ROI object are a human face or a head and shoulder area of a human body. The disclosed techniques include a hybrid technique that combines ROI feature detection, region segmentation, and background subtraction. In this way, the disclosed techniques may provide accurate foreground object generation and low-complexity extraction of the foreground object from the video sequence. A ROI object segmentation system may implement the techniques described herein. In addition, ROI object segmentation may be useful in a wide range of multimedia applications that utilize video sequences, such as video telephony applications and video surveillance applications.
摘要:
This disclosure describes adaptive filtering techniques to improve the quality of captured imagery, such as video or still images. In particular, this disclosure describes adaptive filtering techniques that filter each pixel as a function of a set of surrounding pixels. An adaptive image filter may compare image information associated with a pixel of interest to image information associated with a set of surrounding pixels by, for example, computing differences between the image formation associated with the pixel of interest and each of the surrounding pixels of the set. The computed differences can be used in a variety of ways to filter image information of the pixel of interest. In some embodiments, for example, the adaptive image filter may include both a low pass component and high pass component that adjust as a function of the computed differences.
摘要:
The disclosure is directed to techniques for region-of-interest (ROI) video processing based on low-complexity automatic ROI detection within video frames of video sequences. The low-complexity automatic ROI detection may be based on characteristics of video sensors within video communication devices. In other cases, the low-complexity automatic ROI detection may be based on motion information for a video frame and a different video frame of the video sequence. The disclosed techniques include a video processing technique capable of tuning and enhancing video sensor calibration, camera processing, ROI detection, and ROI video processing within a video communication device based on characteristics of a specific video sensor. The disclosed techniques also include a sensor-based ROI detection technique that uses video sensor statistics and camera processing side-information to improve ROI detection accuracy. The disclosed techniques also include a motion-based ROI detection technique that uses motion information obtained during motion estimation in video processing.
摘要:
The disclosed embodiments provide a method and apparatus for interoperability between CTX and DTX communications systems during transmissions of silence or background noise [FIG. 2]. Continuous eighth rate encoded noise frames are translated to discontinuous SID frames for transmission to DTX systems (402–410). Discontinuous SID frames are translated to continuous eighth rate encoded noise frames for decoding by a CTX system (602–606). Applications of CTX to DTX interoperability comprise CDMA and GSM interoperability (narrowband voice transmission systems), CDMA next generation vocoder (The Selectable Mode Vocoder) interoperability with the new ITU-T 4 kbps vocoder operating in DTX-mode for Voice Over IP applications, future voice transmission systems that have a common speech encoder/decoder but operate in differing CTX or DTX modes during speech non-activity, and CDMA wideband voice transmission system interoperability with other wideband voice transmission systems with common wideband vocoders but with different modes of operation (DTX or CTX) during voice non-activity.
摘要:
Techniques are presented herein to provide tandem-free operation between two wireless terminals through two otherwise incompatible wireless networks. Specifically, embodiments provide tandem-free operation between a wireless terminal communicating through a continuous transmission (CTX) wireless channel to a wireless terminal communicating through a discontinuous transmission (DTX) wireless channel. In a first aspect, inactive speech frames are translated between DTX and CTX formats. In a second aspect, each wireless terminal includes an active speech decoder that is compatible with the active speech encoder on the opposite end of the mobile-to-mobile connection.
摘要:
The disclosure is directed to techniques for region-of-interest (ROI) coding for video telephony (VT). The disclosed techniques include a technique for generation of a quality metric for ROI video, which jointly considers a user's degree of interest in the ROI, ROI video fidelity, and ROI perceptual quality in evaluating the quality of an encoded video sequence. The quality metric may be used to bias ROI coding and, in particular, the allocation of coding bits between ROI and non-ROI areas of a video frame.
摘要:
The disclosure is directed to techniques for content-adaptive background skipping for region-of-interest (ROI) video coding. The techniques may be useful in video telephony (VT) applications such as video streaming and videoconferencing, and especially useful in low bit-rate wireless communication applications, such as mobile VT. The disclosed techniques analyze content information of a video frame to dynamically determine whether to skip a non-ROI area within the frame. For example, the skipping determination may be based on content activity, such as ROI shape deformation, ROI motion, non-ROI motion, non-ROI texture complexity, and accumulated distortion due to non-ROI skipping. The skip determination may operate in conjunction with either frame-level or macroblock-level bit allocation.
摘要:
The disclosure is directed to adaptive frame skipping techniques for rate controlled video encoding of a video sequence. According to the disclosed techniques, an encoder performs frame skipping in an intelligent manner that can improve video quality of the encoded sequence relative to encoding using conventional frame skipping. In particular, the disclosed frame skipping scheme is adaptive and considers motion activity of the video frames in order to identify certain frames that can be skipped without sacrificing significant video quality. The described frame skipping techniques may take into account the tradeoff between spatial and temporal quality of different video frames. In this manner, the techniques can allocate limited resources between the spatial and temporal quality in a way that can improve the visual appearance of a video sequence.
摘要:
A system and method for detection of rate determination algorithm errors in variable rate communications system receivers. The disclosed embodiments prevent rate determination algorithm errors from causing audible artifacts such as screeches or beeps. The disclosed system and method detects frames with incorrectly determined data rates and performs frame erasure processing and/or memory state clean up to prevent propagation of distortion across multiple frames. Frames with incorrectly determined data rates are detected by checking illegal rate transitions, reserved bits, validating unused filter type bit combinations and analyzing relationships between fixed code-book gains and linear prediction coefficient gains.
摘要:
Configurations disclosed herein include systems, methods and apparatus that may be applied in a voice communications and/or storage application to remove, enhance, and/or replace the existing context. Example embodiments may decode two sets of encoded frames from an encoded audio signal. The two frame sets may be encoded using different encoding schemes. For example, the bit rate or coding mode may differ between the two encoded frame sets. Based on information from one of the decoded sets of frames, a context component included in a signal represented by the other frame set may be suppressed. Other embodiments may generate an audio context signal within the mobile user terminal, and mix the generated audio signal with another decoded audio signal.