Abstract:
In a selective MIMO system, the mobile station provides channel quality feedback for one or more possible transmission mode. The mobile station provides channel quality feedback for a first mode regardless of channel conditions and determines whether to provide feedback for one or more additional modes based on current channel conditions.
Abstract:
A method and apparatus for code multiplexing one or more control signals onto a shared control channel. According to the present invention, a control signal for transmission from a base station to a mobile station terminal is repeated in each slot of a predetermined time interval. The control signal in each slot is spread using a bit-level spreading sequence, where the bit-level spreading sequence varies from slot to slot according to a predefined sequence-hopping pattern. The spread control signals generated for transmission to each mobile station terminal are then combined and spread using a common channelization code.
Abstract:
A method is described herein that enables a Selective-Per-Antenna-Rate-Control (S-PARC) technique to be effectively implemented in a wireless communications network (e.g., HSPDA third generation communications network). In one embodiment, the method enables the S-PARC technique to be implemented in the wireless communications network by enabling a mobile terminal device to generate and transmit a “full” feedback signal to a base station that analyzes the “full” feedback signal and determines which mode and transmission rate(s) are going to be used to transmit data substream(s) from selected transmit antenna(s) to the mobile terminal device. In another embodiment, the method enables the S-PARC technique to be implemented in the wireless communications network by enabling a mobile terminal device to generate and transmit a “reduced” feedback signal to a base station that analyzes the “reduced” feedback signal and determines which mode and transmission rate(s) are going to be used to transmit data substream(s) from selected transmit antenna(s) to the mobile terminal device.
Abstract:
Exemplary received signal processing may be based on maintaining a model of received signal impairment correlations, wherein each term of the model is updated periodically or as needed based on measuring impairments for a received signal of interest. An exemplary model comprises an interference impairment term scaled by a first model fitting parameter, and a noise impairment term scaled by a second model fitting parameters. The model terms may be maintained based on current channel estimates and delay information and may be fitted to measured impairment by adapting the model fitting parameters based on the measured impairment. The modeled received signal impairment correlations may be used to compute RAKE combining weights for received signal processing, or to compute Signal-to-Interference (SIR) estimates. Combined or separate models may be used for multiple received signals. As such, the exemplary modeling is extended to soft handoff, multiple antennas, and other diversity situations.
Abstract:
A convolutional feedback encoder uses a shift type shift register with both feed-forward and feedback circuit structures to process and encode a fixed length information sequence. The encoder is configured, through careful selection of the feedback coefficients, so as to achieve a tail-biting mode of operation. Tail-biting means that the state of the encoder prior to the input of the first uncoded data bit is the same as the state of the encoder upon input of the last uncoded data bit. The starting state of the encoder is found by linearly combining data bits in the information sequence. The linear combinations are determined by a selection matrix or selection vector which is derived from the feedback coefficients of the encoder.
Abstract:
Error protection based on a nonlinear code set may be used in a multiple input multiple output (MIMO) radio communications system. A decoder decodes received MIMO data streams and generates an automatic repeat request (ARQ) message for data units received for the MIMO data streams for each transmission time interval. An encoder codes the ARQ message using a code word from a nonlinear code set. At the data transmitter, which transmits one or more data units in transmission time intervals from two or more MIMO data streams, the ARQ message associated with the transmitted data units is decoded using a code word from the nonlinear code set.
Abstract:
Methods for improving uplink communications in a Wideband Code Division Multiple Access (WCDMA) communication system, wherein mobile terminals can transmit at various transmission power levels. In a mobile terminal, the method includes the steps of receiving a configuration message having at least one of a power offset parameter and a maximum number of retransmission attempts parameter; when the mobile terminal performs a non-scheduled transmission, it transmits according to the parameters contained in the configuration message. In a network node, the method includes the steps of transmitting to at least one mobile terminal the configuration message having at least one of a power offset parameter and a maximum number of retransmission attempts parameter; and, adjusting a power setting for the transmission of acknowledgement or negative-acknowledgement messages from the wireless network to one or more of mobile terminals.
Abstract:
Exemplary combining weight generation is based on estimating received signal impairment correlations using a weighted summation of interference impairment terms, such as an interference correlation matrix associated with a transmitting base station, and a noise impairment term, such as a noise correlation matrix, the impairment terms scaled by fitting parameters. The estimate is updated based on adapting the fitting parameters responsive to measured signal impairment correlations. The interference matrices are calculated from channel estimates and delay information, and knowledge of the receive filter pulse shape. Instantaneous values of the fitting parameters are determined by fitting the impairment correlation terms to impairment correlations measured at successive time instants and the fitting parameters are adapted at each time instant by updating the fitting parameters based on the instantaneous values.
Abstract:
A method and apparatus for determining operating modes in a receiver is described herein. A delay searcher in the receiver detects a signal image in the received signal. When the receiver is a RAKE receiver, a plurality of RAKE fingers coherently combine time-shifted versions of the received signal at different delays. Alternatively, when the receiver is a chip equalization receiver, an FIR filter coherently pre-combines the signal images in the received signal. A processor determines delays. In particular, the processor generates a first signal quality metric for a single-delay receiver mode, and generates a second signal quality metric for a multi-delay receiver mode. Based on a comparison of the first and second signal quality metrics, the processor selects the single-delay or the multi-delay receiver mode for processing the signal image.
Abstract:
A method and apparatus that reduces the likelihood of having a high peak power in any one bit position of code multiplexed downlink control channel symbols is described herein. An exemplary method includes selecting a different bit-level spreading sequence for each mobile terminal from a set of orthogonal bit-level spreading sequences, where code values in any one bit position are not the same for all of the bit-level spreading sequences in the set. When a code multiplexing system uses the selected bit-level spreading sequences from the sequence set to code multiplex the downlink control channel symbols, the resulting combined signal has a lower likelihood of having a high peak power.