Abstract:
An optical scanning apparatus provides improved image quality by changing the amount of writing scale compensation for a pixel clock during a scanning cycle. A pixel clock generation unit of the optical scanning apparatus divides the scanning cycle into multiple division periods. A phase change of the pixel clock is carried out for each of the division periods. The phase change can also be different from scanning cycle to scanning cycle.
Abstract:
An image-forming apparatus is disclosed that includes at least one imaging optical system forming an electrostatic latent image on the scanning surface of a medium moving in a sub scanning direction by scanning the scanning surface in a main scanning direction by periodically deflecting a laser beam with a rotary deflector, a pixel clock generation part generating a pixel clock signal for controlling the emission timing of the laser beam and changing the phase of the pixel clock signal, a region setting part setting the length of each of multiple regions based on image writing magnifications in a line in the main scanning direction, the regions being formed by dividing part of the scanning surface corresponding to the line in the main scanning direction, and a phase control part controlling the changing of the phase of the pixel clock signal region by region based on the image writing magnifications.
Abstract:
A projection screen 111 comprises a total reflection prism lens 114 and a lenticular lens 115 provided on the viewer's side of the total reflection prism lens 114. The total reflection prism lens 114 has a plurality of unit prisms 113 on its back surface (the outermost plane of incidence) on which imaging light L is incident. Each unit prism 113 has an apical angle λ that corresponds to the angle between the plane of incidence 113a and the plane of total reflection 113b, and the apical angles λ of the unit prisms 113 vary with the position of each unit prism 113 on the screen plane. In particular, the unit prisms 113 have apical angles λ varying continuously from 30° to 45° so that the apical angles λ on the side distant from the center O of the concentric circles are greater than the apical angles λ on the side close to this center O.
Abstract:
A color image forming apparatus includes a pattern forming mechanism configured to form a pattern for fine adjustment and a pattern for rough adjustment on a transfer medium, a detection mechanism configured to detect the pattern formed thereon, a displacement calculation mechanism configured to obtain a predetermined value and preset reference values, to calculate the amount of displacement based on the detected pattern and the preset reference values, and to determine whether or not the amount of the displacement is equal to or less than the predetermined value, and a displacement correction mechanism configured to correct the displacement based on the calculation.
Abstract:
An image forming apparatus includes an image forming mechanism configured to perform an image processing operation for forming a plurality of elementary-color images, superposing the plurality of elementary-color images sequentially and accurately into a single color image on a transfer medium, and transferring the single color image onto a recording sheet. An error correction mechanism is configured to perform a plurality of different recording error corrections for correcting different recording errors in a main scanning direction and a sub scanning direction during a time interval between the image processing operations on the recording sheet and on a following recording sheet. And, a selector is configured to activate at least two of the plurality of different recording error corrections.
Abstract:
An image forming apparatus having deflection scanning type and line type exposing devices and first and second developing devices arranged around a photoconductive element, so that parts around the photoconductive element are arranged with ease to promote the miniaturization of the apparatus. The exposing devices are selected based on the principle that the image quality is enhanced for an image of particular color and is lowered for an image of another color expected to be printed less frequently. Specifically, the deflection scanning type exposing device forms the image of the particular color, and the line type exposing device which has an inherently long optical path and simple structure forms the image of another color. Fans are provided to produce cooling air flow to the line type exposing device and to draw out toner dirt and ozone produced by the charger associated therewith. The line type exposing device and the associated charger are electrically insulated from each other and mounted in a common casing. Cleaning elements are provided to clean the charger and the line type exposing device during withdrawal of these elements from the photoconductive element.
Abstract:
A determining unit determines whether a difference between a temperature value and a temperature detected by a temperature detecting unit is equal to or larger than a first value. A pattern forming unit, when the determining unit determines that the difference is equal to or larger than the first value, forms a pattern for measurement including sub-patterns of a plurality of colors on a transfer medium. A calculating unit calculates a misregistration-amount for each sub-pattern based on a detected position of the sub-pattern and a predetermined position of the sub-pattern. A correcting unit corrects a position on which the sub-pattern is to be formed based on the misregistration-amount. An image forming unit forms an image for each color factoring in corrected position for each color.
Abstract:
The present invention provides a Fresnel lens sheet that can, in production using a mold, be easily released from the mold and that scarcely produces stray light upon use, and others. Each prism 2 on the incident side of a Fresnel lens sheet 1 is formed to have a nearly triangular cross section and has a plane of refraction 3 that refracts projected light S incident on this plane and a plane of total reflection 4 that totally reflects, toward the viewer's side, at least part of the light refracted at the plane of refraction 3. Each prism 2 is made so that a root 5 between a prism 2 and a prism 3 situated next to the prism 2, on the plane of total reflection side of the prism 2 (a root 5 defined by the plane of refraction 3 of one prism 2B and the plane of total reflection 4 of another prism 2A situated next to the prism 2B, on the side of the plane of refraction 3 of the prism 2B) is curved toward the prism 2A side from the prism 2B side.
Abstract:
The present invention provides a Fresnel lens sheet capable of successfully avoiding the “collapse”, “abrasion” and “moiré” problems. A Fresnel lens sheet 10 constitutes, together with a lenticular lens sheet, a rear projection screen, which is mounted in the frame of a rear projection type display. The Fresnel lens sheet 10 includes, on one surface of its substrate, a Fresnel lens part 13 containing a plurality of lenses 11 concentrically formed on one plane. The apexes 11a of the lenses 11 situated in the area between the center O and the outer edge P of the Fresnel lens part 13 are flattened to give flat faces 12, and the widths W of the flat faces 12 of the lenses 11 on the outer edge P side are made greater than the widths W of the flat faces 12 of the lenses 11 on the center O side. The widths W of the flat faces 12 of the lenses 11 are from 0 to 30 μm.
Abstract:
An image-forming apparatus is disclosed that includes at least one imaging optical system forming an electrostatic latent image on the scanning surface of a medium moving in a sub scanning direction by scanning the scanning surface in a main scanning direction by periodically deflecting a laser beam with a rotary deflector, a pixel clock generation part generating a pixel clock signal for controlling the emission timing of the laser beam and changing the phase of the pixel clock signal, a region setting part setting the length of each of multiple regions based on image writing magnifications in a line in the main scanning direction, the regions being formed by dividing part of the scanning surface corresponding to the line in the main scanning direction, and a phase control part controlling the changing of the phase of the pixel clock signal region by region based on the image writing magnifications.