摘要:
An image generation device includes an image acquisition section for acquiring the first and second moving images having different resolutions and different frame rates or different exposure times; a light amount determination section for determining whether each pixel is saturated or blocked-up-shadowed; and an image processing section for generating, from the moving images, a new moving image having a frame rate which is equal to or higher than the frame rate of the moving images and having a resolution of each frame image which is equal to or higher than the resolution of the moving images. For a pixel not determined as being saturated or being blocked-up-shadowed, the image processing section generates a new moving image fulfilling a first condition; and for a pixel determined as being saturated or being blocked-up-shadowed, the image processing section generates a new moving image which does not fulfill the first condition.
摘要:
An image processing apparatus (30) generating an image with high resolution over a diffraction limit includes an image input unit (101) receiving red image data and green image data, which represent images of an object by red light and green light, respectively, and receiving a blue image data representing an image of the object by blue light having a wavelength shorter than the red and the green light. Further, the image processing apparatus (30) includes an image processing unit (103) correcting the red and the green image data by adding thereon a spatial high frequency component contained in the blue image data, such that the image input unit (101) receives, as the blue image data, image data generated by light receiving elements provided at intervals shorter than a size of a smallest area that the red and the green light can converge.
摘要:
The shooting, recording and playback system 100 of the present invention receives incoming light 101, stores an image shot, and then subjects the image shot to be reproduced to resolution raising processing, thereby outputting RGB images with high spatial resolution and high temporal resolution (ROUT GOUT BOUT) 102. The system 100 includes a shooting section 103, a color separating section 104, an R imaging sensor section 105, a G imaging sensor section 106, a B imaging sensor section 107, an image shot storage section 108, an image shot writing section 109, a memory section 110, an image shot reading section 111, a spatial resolution upconverter section 112, a temporal resolution upconverter section 113, an output section 114, and a line recognition signal generating section 185. The system can get image data with high spatial resolution and high temporal resolution without getting the camera configuration complicated and without decreasing the optical efficiency.
摘要:
The shooting, recording and playback system 100 of the present invention receives incoming light 101, stores an image shot, and then subjects the image shot to be reproduced to resolution raising processing, thereby outputting RGB images with high spatial resolution and high temporal resolution (ROUT GOUT BOUT) 102. The system 100 includes a shooting section 103, a color separating section 104, an R imaging sensor section 105, a G imaging sensor section 106, a B imaging sensor section 107, an image shot storage section 108, an image shot writing section 109, a memory section 110, an image shot reading section 111, a spatial resolution upconverter section 112, a temporal resolution upconverter section 113, an output section 114, and a line recognition signal generating section 185. The system can get image data with high spatial resolution and high temporal resolution without getting the camera configuration complicated and without decreasing the optical efficiency.
摘要:
The shooting, recording and playback system 100 of the present invention receives incoming light 101, stores an image shot, and then subjects the image shot to be reproduced to resolution raising processing, thereby outputting RGB images with high spatial resolution and high temporal resolution (ROUT GOUT BOUT) 102. The system 100 includes a shooting section 103, a color separating section 104, an R imaging sensor section 105, a G imaging sensor section 106, a B imaging sensor section 107, an image shot storage section 108, an image shot writing section 109, a memory section 110, an image shot reading section 111, a spatial resolution upconverter section 112, a temporal resolution upconverter section 113, an output section 114, and a line recognition signal generating section 185. The system can get image data with high spatial resolution and high temporal resolution without getting the camera configuration complicated and without decreasing the optical efficiency.
摘要:
The image generation apparatus includes: an image receiving unit which receives a first video sequence including frames having a first resolution and a second video sequence including frames having a second resolution which is higher than the first resolution, each frame of the first video sequence being obtained with a first exposure time, and each frame of the second video sequence being obtained with a second exposure time which is longer than the first exposure time; and an image integration unit which generates, from the first video sequence and the second video sequence, a new video sequence including frames having a resolution which is equal to or higher than the second resolution, at a frame rate which is equal to or higher than a frame rate of the first video sequence, by reducing a difference between a value of each frame of the second video sequence and a sum of values of frames of the new video sequence which are included within an exposure period of the frame of the second video sequence.
摘要:
An image generation apparatus generates a new video sequence with a high S/N ratio and suppressed motion blurs, from an original video sequence and a still image which are generated by capturing the same dark, moving object. The image generation apparatus includes: a capture condition decision unit (105) which decides, based on an incident-light amount, capture conditions under which the original video sequence and the still image are to be captured; an image receiving unit (101) which receives the original video sequence and the still image which are generated under the capture conditions; an integration processing unit (104a) which generates, from the original video sequence and the still image, the new video sequence including frames having a resolution equal to or higher than the still image, at a frame rate equal to or higher than the original video sequence, by reducing a difference between (i) a value of the still image and (ii) a sum of values of the frames in the new video sequence which correspond to an exposure period for the still image. The capture condition decision unit (105c) decides a longer duration of an exposure period as a duration of the still image capturing, as the incident-light amount is smaller. Here, the duration is longer than an frame interval of the original video sequence.
摘要:
The shooting, recording and playback system 100 of the present invention receives incoming light 101, stores an image shot, and then subjects the image shot to be reproduced to resolution raising processing, thereby outputting RGB images with high spatial resolution and high temporal resolution (ROUT GOUT BOUT) 102. The system 100 includes a shooting section 103, a color separating section 104, an R imaging sensor section 105, a G imaging sensor section 106, a B imaging sensor section 107, an image shot storage section 108, an image shot writing section 109, a memory section 110, an image shot reading section 111, a spatial resolution upconverter section 112, a temporal resolution upconverter section 113, an output section 114, and a line recognition signal generating section 185. The system can get image data with high spatial resolution and high temporal resolution without getting the camera configuration complicated and without decreasing the optical efficiency.
摘要:
An imaging and processing device includes: an optical element; a single imager with a color filter array of a plurality of colors attached thereto for outputting a value according to an amount of light which has been guided by the optical element and transmitted through the color filter array, thereby enabling to obtain separate images of the plurality of colors for every frame time point; a first adder section for adding together values, associated with a first color of the plurality of colors, of different images obtained over a plurality of frame time points; a second adder section for adding together a plurality of values, associated with a second color of the plurality of colors other than the first color, of an image captured at a single frame time point; and an image restoring section for restoring an image including a plurality of colors at each frame time point from an image based on the first color which has been subjected to the addition by the first adder section, and an image based on the second color which has been subjected to the addition by the second adder section.
摘要:
An image processing apparatus (30) for generating an image with high resolution over a diffraction limit includes: an image input unit (101) which receives red image data and green image data which represent images of an object by red light and green light, respectively, and a blue image data which represents an image of the object by blue light having a wavelength shorter than those of the red and the green light; and an image processing unit (103) which corrects the red and the green image data by adding thereon a spatial high frequency component contained in the blue image data, and the image input unit (101) receives, as the blue image data, image data which is generated by light receiving elements provided at intervals shorter than a size of a smallest area that the red and the green light can converge.