Abstract:
A wireless communication and sensing method is disclosed. The method comprises sending, by a wireless communication and sensing node, an integrated sensing and communication, ISAC, signal comprising a communication signal and a sensing signal, wherein the sensing signal comprises one or more single-tone signals, and wherein the number of the single-tone signals being less than 10.
Abstract:
The present document discloses a wireless synchronization method and a wireless synchronization system. The method includes: determining a synchronization path between a first node and a second node (S110); and using the synchronization path to synchronize the first node and the second node (S120), herein the synchronization path is composed of one or more segments of visible paths, and the visible path is a direct path which connects two nodes visible to each other. The present document further discloses a computer storage medium.
Abstract:
A method for transmitting control information, a channel or signal, and a corresponding sending end are provided. The method includes: after performing low bit rate coding and/or low order modulation on data containing the control information, carrying the data on partial physical resources of a reference signal for transmission, herein the coding rate is lower than the highest coding rate set by the system and the modulation order is lower than the highest modulation order set by the system. The method further includes: selecting one transmission mode from multiple transmission modes configured for the channel or signal; transmitting known data; transmitting non-known data and being subject to a coding limitation and/or modulation limitation; and transmitting the non-known data and not being subject to the modulation limitation and the coding limitation; and sending transmission mode configuration information to a receiving end to indicate the selected transmission mode.
Abstract:
Disclosed are a method, apparatus and system for data transmission in a downlink virtual multi-antenna system. The method includes: N terminals receive downlink data and/or downlink Demodulation Reference Signals (DMRSs) from one Node B or multiple Nodes B, N being a positive integer larger than or equal to 2; and one terminal in the N terminals forwards the downlink data and/or downlink DMRSs received from the one Node B or multiple Nodes B to M terminal(s), M being a positive integer larger than or equal to 1. A first forwarding unit of the apparatus is configured to forward received downlink data and/or downlink DMRSs of a Node B to M terminal(s) by one terminal in N terminals, M being a positive integer larger than or equal to 1.
Abstract:
Provided are a data modulation method and apparatus, a device, and a storage medium. The data modulation method includes that: a modulation manner is configured, where a constellation point modulation symbol of the modulation manner is formed by combining a first group of constellation point modulation symbols and a second group of constellation point modulation symbols; and data is modulated by using the modulation manner, where the data includes a first data block and a second data block, the first data block is modulated by the first group of constellation point modulation symbols, and the second data block is modulated by the second group of constellation point modulation symbols.
Abstract:
Methods, systems, and devices related to digital wireless communication, and more specifically, to techniques related to operating an access network with multiple domains. In an example embodiment, a method for wireless communication can include receiving, at a physical resource group control function, a first message on a service-based interface provided by the physical resource group control function. The method may also include, in response to receiving the first message, transmitting, by the physical resource group control function, a second message on the service-based interface provided by the physical resource group control function.
Abstract:
A positioning method and a corresponding terminal and system. A terminal acquires positioning information of the terminal, and sends the acquired positioning information to a first transmission node, the positioning information comprising at least one type of the following information: signal strength information, a subframe or subframe set index, channel characteristic information, access point information and environment characteristic information. The first transmission node transmits the positioning information to a positioning service system, and the positioning service system acquires the positioning information reported by the terminal and determines a geographic position of the terminal according to the positioning information. The present invention can satisfy related enhanced positioning demands.
Abstract:
Disclosed are a method, apparatus and system for data transmission in a downlink virtual multi-antenna system. The method includes: N terminals receive downlink data and/or downlink Demodulation Reference Signals (DMRSs) from one Node B or multiple Nodes B, N being a positive integer larger than or equal to 2; and one terminal in the N terminals forwards the downlink data and/or downlink DMRSs received from the one Node B or multiple Nodes B to M terminal(s), M being a positive integer larger than or equal to 1. A first forwarding unit of the apparatus is configured to forward received downlink data and/or downlink DMRSs of a Node B to M terminal(s) by one terminal in N terminals, M being a positive integer larger than or equal to 1.
Abstract:
Disclosed are a method, device and system for signalling transmission in a virtual multi-antenna system. The method includes N terminals receive CSI-RSs from a Node B, N being a positive integer larger than or equal to 2; and one terminal in M terminal(s) calculates channel related information from the Node B to the terminal according to the received CSI-RS, and sends the channel related information to L terminal(s), wherein the M terminal(s) form(s) a subset of the N terminals, M is smaller than or equal to N and larger than or equal to 1, and L is smaller than or equal to N and larger than or equal to 1. A first sending unit in the device is configured to calculate channel related information from a Node B to one terminal in M terminal(s) according to a CSI-RS received by the terminal, and send the channel related information to L terminal(s).
Abstract:
An in-band pseudolite wireless positioning method, system and device are provided. The system has a base station, a pseudolite and a terminal. The base station transmits identifier information to the pseudolite after correcting a transmission clock of the pseudolite and transmits a pseudolite array and positioning correction information to the terminal. The pseudolite generates a random positioning signal sequence according to the identifier information and transmits a positioning signal according to the transmission clock and the random positioning signal sequence. The terminal generates a random positioning signal sequence of the pseudolite according to the pseudolite array and the positioning correction information. The terminal further matches the received positioning signal according to the random positioning signal sequence to obtain the arrival time of the positioning signal and obtain through calculation the position coordinates of the terminal according to the position coordinates of the pseudolite and the arrival time.