Abstract:
A computer-implemented system and method for decoupling processing of request and response messages supporting different pluggable respective transports in a service-oriented pipeline architecture for a request-response Message Exchange Pattern (MEP) is disclosed. The method in an example embodiment includes receiving a message having coded therein information identifying a desired pluggable transport mechanism respectively for a request and a response; processing the message through a message processing pipeline; dispatching the processed message to a dispatcher; determining if the desired pluggable transport mechanism is available; activating the desired pluggable transport mechanism, if the desired pluggable transport mechanism is available; and transporting the processed message via the desired pluggable transport mechanism.
Abstract:
A plurality of application servers hosts a plurality of business applications. A plurality of Application Program Interface (API) servers host a plurality of APIs to provide programmatic access to the plurality of business applications, each of the APIs configured to receive request messages compiled by a remote client application. An example method includes receiving a plurality of request messages generated by the remote client application, each request message requesting an activity to be performed by the targeted API, with respect to an associated application, and comprising at least one data component, and a request component including a reusable identified schema definition specific to the targeted API.
Abstract:
A data storage system may be configured to allocate replica-sets in a balanced manner and mark some of these balanced replica-sets as being spares. As one or more drives or machines fail, the data storage system may move all copies of an affected replica-set to a marked spare replica-set and mark the affected replica-set as being inactive or invalid. As the failed drives are replaced, the data storage system may reconfigure those inactive replica-sets and use them as new spares. The data storage system may implement a coordinator module that handles the balancing and allocation of spares within a sub-cluster. The coordinator may also reallocate entire replica-sets across sub-clusters to maintain balance at the cluster level.
Abstract:
A plurality of application servers hosts a plurality of business applications. A plurality of Application Program Interface (API) servers host a plurality of APIs to provide programmatic access to the plurality of business applications, each of the APIs configured to receive request messages compiled by a remote client application. First and second request messages targeted to first and second APIs have at least one common data component. The first request message includes a first payload specific to the first targeted API and the second request message includes a second payload specific to the second targeted API, the first payload and the second payload each comprise a reusable identified schema definition specific to the targeted API.
Abstract:
A computer-implemented system and method for the definition, creation, management, transmission, and monitoring of errors in a SOA environment. An example embodiment includes: defining a common standard error data structure; automatically generating a unique identifier (ID) for each new error data instance; allowing customization of error data structure through extensions; creation and management of error instances that conform to this structure; ability to group errors across various dimensions; introducing the concept of an error library, the error library including a plurality of localizable error bundles, each of the error bundles including a plurality of error data instances for a particular domain, along with the associated metadata; automatically creating runtime artifacts for each error; ability to transmit errors either as faults or as part of the normal response payload; automatic error metric collection based on various error categories, and finally, tooling to help manage error libraries and reporting errors.
Abstract:
Disclosed are a system comprising a computer-readable storage medium storing at least one program, and a computer-implemented method for event messaging over a network. A subscription interface receives data indicative of a subscription request for sessionized data. An allocation module allocates a sessionizer bank linked to the subscription request. A messaging interface module provisions identifiers linked to the respective processing engines of the sessionizer bank. The messaging interface module registers the allocated sessionizer bank as available to process event messages matching the subscription request by providing the provisioned identifiers. The messaging interface module receives event messages from a producer device linked by a collection server to a selected one of the processing engines of the sessionizer bank. The selected one of the processing engine processes the received event messages in accordance with session rule data linked to the subscription request to generate sessionized data.
Abstract:
Disclosed are a system comprising a computer-readable storage medium storing at least one program, and a computer-implemented method for event messaging over a network. A subscription interface receives data indicative of a subscription request for sessionized data. An allocation module allocates a sessionizer bank linked to the subscription request. A messaging interface module provisions identifiers linked to the respective processing engines of the sessionizer bank. The messaging interface module registers the allocated sessionizer bank as available to process event messages matching the subscription request by providing the provisioned identifiers. The messaging interface module receives event messages from a producer device linked by a collection server to a selected one of the processing engines of the sessionizer bank. The selected one of the processing engine processes the received event messages in accordance with session rule data linked to the subscription request to generate sessionized data.
Abstract:
In one example, a server system in an electronic trading system facilitates an exchange of messages with a remote client application. An Application Program Interface (API) receives a first request message and a second request message, wherein the first request message including a first data payload defined by a common data component and including a first extended payload data, the first extended payload defined by a first schema definition. The second request message includes a second data payload defined by the common data component and a second extended payload data, wherein the second extended payload is defined by a second schema definition different than the first schema definition. In response to receiving the first request message, the API transmits a first response message, and in response to receiving the second request message, the API transmits a second response message different than the first response message.
Abstract:
In one example, a server system in an electronic trading system facilitates an exchange of messages with a remote client application. An Application Program Interface (API) receives a first request message and a second request message, wherein the first request message including a first data payload defined by a common data component and including a first extended payload data, the first extended payload defined by a first schema definition. The second request message includes a second data payload defined by the common data component and a second extended payload data, wherein the second extended payload is defined by a second schema definition different than the first schema definition. In response to receiving the first request message, the API transmits a first response message, and in response to receiving the second request message, the API transmits a second response message different than the first response message.
Abstract:
A computer-implemented system and method for decoupling processing of request and response messages supporting different pluggable respective transports in a service-oriented pipeline architecture for a request-response Message Exchange Pattern (MEP) is disclosed. The method in an example embodiment includes receiving a message having coded therein information identifying a desired pluggable transport mechanism respectively for a request and a response; processing the message through a message processing pipeline; dispatching the processed message to a dispatcher; determining if the desired pluggable transport mechanism is available; activating the desired pluggable transport mechanism, if the desired pluggable transport mechanism is available; and transporting the processed message via the desired pluggable transport mechanism.