Abstract:
A system for obtaining and displaying such images and environmental information from environments is disclosed, as well as a sensor device and a host configured for use in the system, the sensor device having camera assemblies, environmental sensors, and being connected to the host via a wireless communications link. Methods for obtaining and presenting the images and environmental information using system 100 are also disclosed.
Abstract:
The problem of providing a submerged vehicle with above-the-surface communications to a nearby vessel, shore platform, or satellite while traveling at operating speed is solved by an efficiently deployable tethered tow body having a hydrodynamic and buoyant hull body and incorporating a lift-generating wing that provides hydrodynamic lift to efficiently lift the tow body containing antennas and other communications devices to the surface. The tow body allows for stable operation during underwater tow, surface tow, and transitions between underwater tow and surface tow. Disclosed embodiments include communications apparatuses encompassing the principles of the tethered tow body, as well as various underwater systems that incorporate a tethered tow body or communications apparatus for establishing communications with a nearby vessel, shore platform, or satellite.
Abstract:
The problem of penetrating through nets and other objects is solved by cutting the object using concentric cutters in which a rotatable cutter having floating teeth rotates concentrically about a stationary cutter having fixed teeth. The object is cut by a severing action caused by the floating teeth of the rotatable cutter sliding against the fixed teeth of the stationary cutter. Embodiments of the invention include a UUV system for penetrating through fishing nets and other objects, concentric cutting assemblies for use in the UUV system and other systems, and a method for penetrating through fishing nets and other objects. A UUV system in accordance with an embodiment of the invention has a concentric cutting assembly at the forward end and a propulsor at the aft end. The concentric cutting assembly integrates seamlessly within the UUV housing and is deployed from the forward end of the UUV, enabling the UUV to quickly and efficiently penetrate through objects blocking its path.
Abstract:
The problem of penetrating through nets and other objects is solved by cutting the object using a linear cutting assembly having a linear cutter arm that moves in an arc and pivots about an attachment point. The object is cut by a severing action caused by a moveable blade of the linear cutting arm moving back and forth across a stationary blade of the linear cutter arm. An underwater vehicle modified to incorporate an embodiment of the linear cutting assembly can cut a sufficiently large opening in the object to allow the vehicle to pass through.
Abstract:
A method of locating an underwater based system, the method including determining the underwater based system's geo-location, encoding the underwater based system's geo-location for RF transmission, encoding the underwater based system's geo-location for acoustic transmission, and transmitting RF and acoustic signals containing the encoded geo-location to a receiving station. A locator for locating an underwater based system including a buoy, a global positioning system having an antenna and a receiver, an RF transmission system including an antenna and a transmitter, an underwater acoustic transducer, and a locator control unit adapted to determine the underwater based system's geo-location, encode the underwater based system's geo-location for RF transmission, encode the underwater based system's geo-location for acoustic transmission, and transmit RF and underwater acoustic signals containing the encoded geo-location.
Abstract:
The problem of penetrating through nets and other objects is solved by cutting the object using concentric cutters in which a rotatable cutter having floating teeth rotates concentrically about a stationary cutter having fixed teeth. The object is cut by a severing action caused by the floating teeth of the rotatable cutter sliding against the fixed teeth of the stationary cutter. Embodiments of the invention include a UUV system for penetrating through fishing nets and other objects, concentric cutting assemblies for use in the UUV system and other systems, and a method for penetrating through fishing nets and other objects. A UUV system in accordance with an embodiment of the invention has a concentric cutting assembly at the forward end and a propulsor at the aft end. The concentric cutting assembly integrates seamlessly within the UUV housing and is deployed from the forward end of the UUV, enabling the UUV to quickly and efficiently penetrate through objects blocking its path.
Abstract:
A variable drag area tow system including a tow cable, and a variable drag area device having a variable projected area, the variable drag area device is configured to have a smaller projected area as the velocity of the variable drag area device with respect to a fluid increases. A method of maintaining tension on a tow cable, the method including deploying at a first velocity a variable drag area device having a variable projected area, increasing the first velocity to a second velocity, and decreasing the projected area of the variable drag area device as the first velocity is increased to the second velocity.
Abstract:
A system for obtaining and displaying such images and environmental information from environments is disclosed, as well as a sensor device and a host configured for use in the system, the sensor device having camera assemblies, environmental sensors, and being connected to the host via a wireless communications link. Methods for obtaining and presenting the images and environmental information using system 100 are also disclosed.
Abstract:
The problem of penetrating through nets and other objects is solved by cutting the object using various cutter systems, which include, for example a track and a moving carriage containing a cutter, a stationary carriage with a fixed or rotating arm, and/or abrasive cutters. The object is cut by a severing, slicing, or wearing action caused by a moveable blade or abrasive surface. An underwater vehicle incorporating an embodiment of the cutter system can cut a sufficiently large opening in the object to allow the vehicle to pass through.
Abstract:
The problem of penetrating through nets and other objects is solved by cutting the object using concentric cutters in which a rotatable cutter having floating teeth rotates concentrically about a stationary cutter having fixed teeth. The object is cut by a severing action caused by the floating teeth of the rotatable cutter sliding against the fixed teeth of the stationary cutter. Embodiments of the invention include a UUV system for penetrating through fishing nets and other objects, concentric cutting assemblies for use in the UUV system and other systems, and a method for penetrating through fishing nets and other objects. A UUV system in accordance with an embodiment of the invention has a concentric cutting assembly at the forward end and a propulsor at the aft end. The concentric cutting assembly integrates seamlessly within the UUV housing and is deployed from the forward end of the UUV, enabling the UUV to quickly and efficiently penetrate through objects blocking its path.