Abstract:
An image sensor unit has a light emitting module and a light guide that guides light emitted by the light emitting module to a bill, the light guide has an incident surface on which the light emitted by the light emitting module is incident, a reflection surface that reflects the light having entered the light guide through the incident surface, and an emission surface from which the light reflected by the reflection surface is emitted toward the bill, and the reflection surface is formed by a plurality of contiguous flat surfaces.
Abstract:
An image sensor unit includes a reflection reading light guide that emits light from a reflection reading light source toward the bill, a transmission reading light guide that emits light from a transmission reading light source toward the bill, an imaging element that focuses light from the bill, and a light receiving element that receives light that is collected by the imaging element. The transmission reading light source and the transmission reading light guide are disposed on the opposite side of a conveyance path through which the bill can pass, for the reflection reading light source and the reflection reading light guide, and a light blocking member that blocks a part of the light from the reflection reading light guide is disposed between the reflection reading light guide and the transmission reading light guide.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
An illumination device includes a light guide made of plastic, and a light source including a light emitting element whose dominant wavelength is a light emission wavelength in an infrared region, and identifies a banknote. White reference plates are provided at positions that are at opposite ends of a rod lens array and cover respective areas external to an image region across the banknote. A correction coefficient is acquired by calculation. The calculation is made by correcting an illuminance such that IR correction data is substantially identical to IR reference data preliminarily stored in a memory circuit in a signal processor on the basis of IR white reference data representing a white reference illuminance generated from light reflected from the white reference plates. The correction coefficient is used for correcting IR image data when the banknote is read.
Abstract:
In the so-called sky-shot in which reading is performed with a platen cover (32) open, an output signal of a read image is compared with a white reference value generated from a white reference member (40). Only if a value greater than or equal to the white reference value exists in the output signal of the read image, a reading operation to be performed with a light source unit in an image sensor unit (33) turned off during an original (34) reading operation is added to each scan line reading operation.
Abstract:
In the so-called sky-shot in which reading is performed with a platen cover (32) open, an output signal of a read image is compared with a white reference value generated from a white reference member (40). Only if a value greater than or equal to the white reference value exists in the output signal of the read image, a reading operation to be performed with a light source unit in an image sensor unit (33) turned off during an original (34) reading operation is added to each scan line reading operation.
Abstract:
In a frame 12 of an image sensor unit, a lens storage compartment 14 and a linear illuminator storage compartment 32 are adjacently arranged substantially in parallel to each other in the longitudinal direction with an inter-compartment portion 33 interposed therebetween, a pin insertion opening 21 that extends from the lens storage compartment 14 to an outside of the frame is formed, a vertical reference face 23 with which a rod lens array 9 is brought into close contact is formed on the inter-compartment portion 33, and a notch 15 that is used for applying an adhesive 13 is formed so as to be open from the lens storage compartment 14 to the linear illuminator storage compartment 32.
Abstract:
A color image sensor which uses a sensor array that has, as a lighting light source, 3-color light emitting elements capable of independently controlling light emitting timings respectively and at least three pixel arrays respectively constituted by a plurality of pixels, respective pixel arrays being comprising color filters having different transmitting wavelength regions from each other, and which independently controls the lighting start and lighting period of each light emitting element, whereby it is possible to prevent color misalignment in an output image signal and regulate the image signal level of each color component.
Abstract:
A light emitting unit is provided. The light emitting unit comprises a substrate, a light emitting element placed on a first surface of the substrate, a front panel covering the first surface, and a back panel placed on a second surface of the substrate, which is opposite to the first surface. An opening for extracting light emitted by the light emitting element is formed in the front panel, and the opening is formed to overlap a part of a light emitting surface of the light emitting element. The back panel has a thermal conductivity higher than that of the front panel, and includes a projecting portion that projects toward the first surface. The projecting portion is in contact with at least one of the first surface, the light emitting element, or the front panel.
Abstract:
An electromagnetic wave detector is provided. The electromagnetic wave detector comprises: a base; a sensor element arranged on a principal surface of the base and configured to convert, into an electrical signal, light emitted from a scintillator which receives an electromagnetic wave; a lens portion arranged between the scintillator and the sensor element and configured to collect the light generated by the scintillator to the sensor element; a light transmissive portion arranged between the lens portion and the sensor element and configured to transmit the light generated by the scintillator; and a shielding portion including an inner wall located on a periphery of the sensor element and configured to shield the electromagnetic wave. The inner wall is arranged between the light transmissive portion and the principal surface.