SYSTEM AND METHOD FOR HYDRAULIC FRACTURE PROPAGATION

    公开(公告)号:US20250020048A1

    公开(公告)日:2025-01-16

    申请号:US18748437

    申请日:2024-06-20

    Abstract: A method involves propagating hydraulic fractures in a reservoir. Such method includes creating a low pressure region in an attractor well. The attractor well is proximate to an area in which hydraulic fractures are desired. The method also includes initiating a hydraulic fracturing operation at a treatment well. The hydraulic fracturing operation is initiated so that a fracture network created by the hydraulic fracturing operation is drawn to propagate toward the low pressure region of the attractor well.

    HYDROCARBON COMPOSITION
    14.
    发明申请

    公开(公告)号:US20250011669A1

    公开(公告)日:2025-01-09

    申请号:US18893400

    申请日:2024-09-23

    Abstract: A jet boiling range composition is provided with an unexpected distribution of carbon chain lengths for the hydrocarbons and paraffins in the composition. The hydrocarbon composition corresponds to a jet boiling range composition that includes 40 wt % or more of hydrocarbons and/or paraffins that have carbon chain lengths of 17 carbons or 18 carbons. Additionally or alternately, the hydrocarbon composition can contain 45 wt % or less of C14-C17 hydrocarbons and/or paraffins. This unexpected distribution of carbon chain lengths in a jet boiling range composition can be achieved for a composition that has a freeze point of −40° C. or lower and a flash point of 38° C. or higher. Optionally, the jet boiling range composition can also have a T10 distillation point of 205° C. or less (such as down to 150° C.) and a final boiling point of 300° C. or less

    Upgrading Pyrolysis Carbon
    15.
    发明申请

    公开(公告)号:US20240425759A1

    公开(公告)日:2024-12-26

    申请号:US18274021

    申请日:2022-01-27

    Abstract: Methods are provided for upgrading of pyrolysis carbon in order to allow for conversion of the pyrolysis carbon into higher value products. Instead of attempting to convert methane into a high value carbon product (such as carbon nanotubes) and H2 in a single reaction step, pyrolysis conditions can be used to form H2 and pyrolysis carbon. The pyrolysis carbon can then be treated in order to convert the pyrolysis carbon (H to C atomic ratio of less than 0.20) into a product with a higher hydrogen content (H to C atomic ratio of 0.25-0.9 or 2.0-7.0 wt % H). The treatment can correspond to exposing the pyrolysis carbon with hydrogen in the presence of a catalyst, exposing the pyrolysis carbon to conditions for alkylation, or a sequential combination thereof. This can convert the pyrolysis carbon into heavy hydrocarbon products that are resin-like solids at room temperature.

    Capacitive cable for a downhole electro-hydraulic tool

    公开(公告)号:US12139972B2

    公开(公告)日:2024-11-12

    申请号:US17228763

    申请日:2021-04-13

    Abstract: A capacitive cable, as well as a method for operating a downhole electro-hydraulic (EH) tool using the capacitive cable, are described herein. The capacitive cable includes at least one standard conductor and at least one capacitive conductor including integrated wire-shaped capacitors. The method includes inserting a tool string including the capacitive cable and an attached downhole EH tool into a wellbore and conducting power from the surface to the downhole EH tool via the standard conductor(s) of the capacitive cable. The method also includes storing electrical energy downhole within the capacitive conductor(s) of the capacitive cable, and activating the downhole EH tool to provide for the rapid release of the electrical energy from the capacitive conductor(s) into the downhole EH tool, initiating an electro-hydraulic event within the wellbore.

    Anode exhaust processing for molten carbonate fuel cells

    公开(公告)号:US12126063B2

    公开(公告)日:2024-10-22

    申请号:US16738519

    申请日:2020-01-09

    Abstract: Systems and methods are provided for integrating a chemical looping combustion system with molten carbonate fuel cells to provide improved operation of the molten carbonate fuel cells when using the exhaust from a gas turbine or other electrical power generation device as the CO2 source for the MCFC cathodes. This integration can be accomplished by using metal oxide in the chemical looping combustion system to oxidize the anode output flow from the MCFCs. This can reduce or minimize the number of separations that need to be performed in order to process the concentrated CO2 present within the anode exhaust. By reducing, minimizing, or eliminating the CO and H2 in the anode exhaust, the need to perform more costly separations (such as cryogenic separation or amine washing) to obtain a high purity CO2 product stream can be reduced or minimized. Optionally, the cathode exhaust from the molten carbonate fuel cells can be used as an oxygen-containing stream for regeneration of the metal oxide.

Patent Agency Ranking