Abstract:
A control rod drive system and an inspection method of the control rod drive system capable of performing inspection safely and effectively. A control rod drive system controlling operation by supplying a hydraulic pressure to control rod drive mechanisms. A plurality of first hydraulic control units supply the hydraulic pressure to corresponding control rod drive mechanisms and a second hydraulic control unit supplies the hydraulic pressure to corresponding control rod drive mechanisms of the first hydraulic control unit as an inspection target instead of the first hydraulic control unit.
Abstract:
When a power source is lost after an operation stop of a nuclear power plant, a first open/close valve is opened via a first battery at an early stage and steam in a reactor pressure vessel (RPV) is condensed in a suppression pool. The heat of the water in the suppression pool is transmitted to a cooling water pool located below inner space between first and second reactor containment vessels surrounding the RPV. A second open/close valve is opened via a second battery at the early stage and cooling water in a tank is injected into the RPV. After the early stage, a third open/close valve is opened via a third battery, and a cooling medium becomes steam by an evaporator in the RPV, the steam being condensed by a condenser disposed in the inner space to become a liquid of the cooling medium and is returned to the evaporator.
Abstract:
Chirp waves generated in a transmitting/receiving unit is supplied to ultrasonic sensors. Signals output from the ultrasonic sensors are supplied to the transmitting/receiving unit and summed in a signal processing/recording unit. The signal processing/recording unit performs mutual correlation processing between the summed signals and the chirp waves and calculates a peak generation time difference. Necessity of exchanging a pipe is determined by calculating and recording the thickness of a pipe from the calculated time difference and calculating a difference between thicknesses measured in the past and the present.
Abstract:
In an electrodeposition treatment of an iron-group metal ion-containing liquid, without being influenced by the properties of the iron-group metal ion-containing liquid, iron-group metal ions are efficiently removed from the liquid by precipitation. An anode chamber 2A provided with an anode 2 and a cathode chamber 3A provided with a cathode 3 are separated from each other by a cation exchange membrane 5, an iron-group metal ion-containing liquid is charged into the anode chamber 2A, a cathode liquid is charged into the cathode chamber 3A, and by applying the voltage between the anode 2 and the cathode 3, iron-group metal ions in the liquid in the anode chamber 2A are moved into the liquid in the cathode chamber 3A through the cation exchange membrane 5, so that an iron-group metal is precipitated on the cathode 3.
Abstract:
To provide a plate heat exchanger free from degradation of gaskets which form a flow path through which a high-temperature fluid flows. In the plate heat exchanger, a plurality of heat transfer plates 20 each provided with passage holes 21, 22, 23, and 24 in corners are stacked; a flow-path forming gasket 31 is interposed between peripheries of each adjacent ones of the heat transfer plates 20; communicating-path forming gaskets 32 are installed, surrounding the passage holes 21 in each adjacent ones of the heat transfer plates 20 alternately; and thereby a first flow path 1 adapted to pass a high-temperature fluid H, a second flow path adapted to pass a low-temperature fluid C, and communicating paths 3 adapted to cause the high-temperature fluid H and the low-temperature fluid C, respectively, to flow in and out of the first flow path 1 and the second flow path 2 are formed alternately on opposite sides of each of the heat transfer plates 20. The flow-path forming gasket 31 is made up of an inner gasket member 31a and an outer gasket member 31b arranged in two parallel lines.
Abstract:
A gas supply apparatus of the present invention includes a gas discharge line of a first electromagnetic valve having s a switching valve placed therein, and a second electromagnetic valve placed between the switching valve and a gas supply source. The switching valve switches between a gas discharge from the first electromagnetic valve and a gas supply to the first electromagnetic valve. At the time of a normal operation, the second electromagnetic valve opens a gas discharge line side and closes a switching valve side, and when the power source is lost, the second electromagnetic valve opens the switching valve side and closes the gas discharge line side. In this way, even when the power source is lost, an operating valve can not only be operated remotely but also be operated safely by a remote operator.
Abstract:
A flow-path forming gasket is interposed between peripheries of each adjacent ones of stacked heat transfer plates; communicating-path forming gaskets are each installed, surrounding the passage holes in each adjacent ones of the heat transfer plates alternately; and thereby a first flow path adapted to pass a high-temperature fluid, a second flow path adapted to pass a low-temperature fluid, and communicating paths adapted to cause the fluids, respectively, to flow in and out of the first and second flow paths are formed alternately on opposite sides of each heat transfer plate. A drain hole is formed in each of the heat transfer plates to discharge fluid leaking from the first flow path, the second flow path, or the communicating path. The drain hole is surrounded by gaskets isolated from the first flow path, the second flow path, or the communicating path. A leakage flow path or a leakage collector is formed by the gaskets.
Abstract:
Disclosed is a water jet peening method that includes the steps of: preparing a water jet peening apparatus having a supporting member, a first divider plate, a nozzle support body, and a second divider plate; inserting the water jet peening apparatus into a piping in which a structure or electronic device is mounted that is susceptible to damage by a jet of water discharged from a jet nozzle or by shock waves; disposing either the first divider plate or the second divider plate between the jet nozzle and the structure or electronic device; filling water into an internal area formed in the piping between the first divider plate and the second divider plate; and subjecting the inner surface of the piping to water jet peening by allowing the jet nozzle to discharge a jet of water into the water in the internal area.
Abstract:
The invention includes a heat exchanger provided at a position higher than a primary containment vessel; a condensate storage tank disposed below the heat exchanger and above an upper end of a reactor core placed in a reactor pressure vessel; a non-condensate gas discharge line connected to an upper section of the condensate storage tank and to a suppression pool; a second condensate discharge line connected to a position below that section of the condensate storage tank to which a first end of the non-condensate gas discharge line is connected, and to the suppression pool; and a condensate return line connected to a position below that section of the condensate storage tank to which a first end of the second condensate discharge line is connected, and to a side portion of the reactor pressure vessel, the side portion being above the upper end of the core.
Abstract:
A jet pump beam (hereinafter, referred to as a beam) is fitted into a pair of projecting portions installed to a transition piece, and after the beam is arched, a beam bolt engaged with the beam is tightened. An end of the beam bolt comes in contact with a top surface of an insert member fitted into an elbow disposed between the pair of projecting portions. An ultrasonic sensor head is fixed to the beam bolt, and ultrasonic waves are sent to the beam bolt from the ultrasonic sensor in the ultrasonic sensor head. An ultrasonic measuring apparatus obtains echo intensity of each of reflected waves generated at the end of the beam bolt and a bottom surface of the insert member, and based on the echo intensities, an echo intensity ratio R is calculated. The installed state of the beam is checked using the echo intensity ratio R.