Abstract:
A lithographic printing plate precursor, comprising a support having thereon an image-recording layer containing (A) an infrared absorbing agent, (B) a radical polymerization initiator, (C) a radical polymerizable compound, (D) a polymer compound containing a polyoxyalkylene structure and (E) an ultraviolet absorbing agent and being capable of forming an image by supplying at least one of printing ink and dampening water on a printing machine after imagewise exposure to remove an unexposed area of the image-recording layer.
Abstract:
A lithographic printing plate precursor includes: an aluminum support; an intermediate layer; and an image-recording layer, in this order, wherein at least one of the intermediate layer and the image-recording layer contains a compound having an amino group and a functional group capable of interacting with the aluminum support in a molecule.
Abstract:
Imageable elements can be imaged and then processed using a solution containing core-shell particles that are designed to complex with non-coalesced particles in the non-exposed regions of imaged element. A separate development step is not needed, but the non-coalesced particles and complexed core-shell particles can be removed from the resulting printing plate before using the resulting lithographic printing plate for printing.
Abstract:
Provided is a directly imageable waterless planographic printing plate precursor that comprises at least a heat sensitive layer and a silicone rubber layer formed on a substrate in this order and has a high sensitivity not only immediately after the precursor production but also after the passage of time. In the directly imageable waterless planographic printing plate precursor, the heat sensitive layer contains liquid bubbles filled with a liquid with a boiling point in the range of 210 to 270° C. Also provided is a production method for making a directly imageable waterless planographic printing plate precursor.
Abstract:
A processing method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor comprising a support on a surface of which at least one of: a hydrophilizing treatment; and an undercoat layer has been provided and an image-recording layer, to cure an exposed area of the image-recording layer; and undergoing developing processing with an aqueous solution having pH of from 2 to 10, wherein the aqueous solution comprises an amphoteric surfactant and an anionic surfactant selected from an anionic surfactant having an aliphatic chain and a total number of carbon atoms included in the aliphatic chain of 6 or more and an anionic surfactant having an aromatic ring and a total number of carbon atoms of 12 or more, and a content of the anionic surfactant is from 0.1 to 3.3% by weight of the aqueous solution.
Abstract:
A method of processing an on-press developable lithographic printing plate involving the removal of the overcoat after laser imaging and before on-press development is described. The plate comprises a substrate, an on-press ink and/or fountain solution developable photosensitive layer, and an overcoat. The laser imaged plate is mechanically stripped off the overcoat, and then developed with ink and/or fountain solution on a lithographic press. Such a process allows the use of overcoat to achieve faster photospeed and improved durability of the plate without having various issues as related to overcoat such as contamination to the fountain solution, difficulty to remove of certain overcoat, and limited white light stability.
Abstract:
A lithographic printing plate precursor is provided that, using laser exposure, exhibits an excellent capacity for plate inspection, an excellent on-press development performance or gum development performance, and an excellent scumming behavior, while maintaining a satisfactory printing durability. There is also provided a method of lithographic printing that uses this lithographic printing plate precursor. The lithographic printing plate precursor comprises an image recording layer having (A) a nonionic polymerization initiator that contains at least two cyclic imide structures, and (B) a compound that has at least one addition-polymerizable ethylenically unsaturated bond.
Abstract:
Lithographic printing plates are imaged using an inkjet printer to imagewise apply a chemical or masking agent onto the plate surface. In some embodiments, the chemical causes an affinity change, thereby facilitating lithographic printing.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area with at least one of printing ink and dampening water on a printing machine after exposure and contains (A) an infrared absorbing dye, (B) a polymerization initiator, (C) a polymerizable compound and (D) a binder polymer having an alkylene oxide group; and a protective layer containing (E) a hydrophilic polymer containing at least a repeating unit represented by the formula (1) as defined herein and a repeating unit represented by the formula (2) as defined herein.
Abstract:
A heat-sensitive positive-working lithographic printing plate precursor includes a support having a hydrophilic surface or which is provided with a hydrophilic layer, a heat-sensitive coating including an IR absorbing agent, a phenolic resin, and a first polymer, wherein the first polymer is an alkaline soluble polymer including a monomeric unit having a structure according to Formula I or Formula II, wherein at least one of the aromatic groups Ar1 and Ar2 is an optionally substituted heteroaromatic group: