Abstract:
A method of producing a MEMS device provides an apparatus having structure on a first layer that is proximate to a substrate. The apparatus has a space proximate to the structure. The method adds doped material to the space. The doped material dopes at least a portion of the first layer.
Abstract:
A method of producing a MEMS device provides an apparatus having structure on a first layer that is proximate to a substrate. The apparatus has a space proximate to the structure. The method adds doped material to the space. The doped material dopes at least a portion of the first layer.
Abstract:
An electrostatic drive type MEMS device and a manufacturing method thereof are provided, in which flattening the surface of a driving side electrode, improving performance, and furthering the improvements of the degree of freedom of designing in the manufacturing process are implemented. In addition, a GLV device using this MEMS device is provided, and further a laser display using this GLV device is also provided. The electrostatic drive type MEMS device includes a substrate side electrode and a beam having a driving side electrode driven by electrostatic attraction force or electrostatic repulsion force that acts between the substrate side electrode and driving side electrode, in which the substrate side electrode is formed of an impurities-doped conductive semiconductor region in a semiconductor substrate.