Abstract:
In order to generate ozone, which is used for ashing and plasma cleaning, plasma generated in a decompressed chamber is conventionally used. But it is difficult to reduce the production cost of an ozone generation, because facility cost and process cost are expensive in a decompressed process. According to the present invention, ozone is generated by atmospheric pressure plasma CVD using dielectric barrier discharge generated by a plasma head where a plurality of plasma head unit members are installed in parallel to generate plasma by applying electric field or magnetic field via a dielectric member. Stable glow discharge plasma is formed even under atmospheric pressure by dielectric barrier discharge. Then, ozone can be generated under atmospheric pressure, and semiconductor device with low cost can be fabricated.
Abstract:
An ozone generator includes a housing having an internal cavity and a plurality of electrode pairs located in the internal cavity. The electrode pairs each contain two electrodes arranged at a distance of a predetermined gap length, and a discharge space is formed between the two electrodes, whereby ozone is produced when a source gas flows at least between the two electrodes and a discharge is generated between the two electrodes. The ozone generator has a non-discharge portion in an arbitrary cross-section having a normal direction parallel to a main flow direction of the source gas in the internal cavity.
Abstract:
A dielectric assembly for generating ozone includes a positive electrode, a negative electrode, a dielectric for generating the ozone, and a knob adapted to extend outside of a housing into which the dielectric assembly is to be placed. A system is also provided for sanitizing and deodorizing water, food, surfaces and air including a microbiological reduction filter device having an input connected to a water supply, a venturi injector disposed within a housing and connected to an output of the microbiological reduction filter device which generates ozone and mixes the generated ozone with the water, and an electrode assembly comprising a plurality of electrodes, a dielectric for generating the ozone, and a knob extending outside of the housing. The dielectric in a first embodiment and the entire dielectric assembly in a second embodiment can be removed from the housing and replaced in its entirety by the knob.
Abstract:
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.
Abstract:
There is described herein a direct current power supply which offers improved control over an output signal. An input signal generated by an alternating current source is received and chopped by a solid state relay. The chopped signal is rectified by a bridge rectifier before being filtered by an “LC” (induction coil-capacitor) or “CLC” (capacitor-induction coil-capacitor) filter. The output signal can then be used as a direct current power supply signal. This power supply may be used in various types of ozone generation systems.
Abstract:
In accordance with at least one exemplary embodiment, a syringe, method and system for delivering a therapeutic amount of ozone are disclosed. An exemplary syringe can have a gas chamber and one or more electrodes. A portion of at least one electrode can be within the gas chamber. Alternatively, singularly or in conjunction, one or both electrodes can be attached to the outside of an exemplary syringe. One or more electrical contact points can be outside the gas chamber. Each electrical contact point can be connected to an electrode. Oxygen gas can provided within the gas chamber of the exemplary syringe. A medical ozone generator can be connected to the syringe via the electrical contact points. Corona discharge can be effectuated via the electrodes, which can result in an amount of ozone gas can being produced from the oxygen gas.
Abstract:
An ozone generating apparatus includes a base container for holder water and a head assembly connected to the upper edge of the base container, the head assembly containing ozone generating cells, each having a dielectric tube and an electrode assembly coaxially disposed with the associated dielectric tube. The dielectric tubes and electrode assemblies are disposed and connected such that the tube and/or electrode assembly of each ozone generating cell can be accessed and replaced independently of all other ozone generating cells, and such that the possibility of cascade failure of all remaining ozone generating cells upon failure of a single cell is substantially eliminated.
Abstract:
An electro chemical conversion cell that can break down certain gasses to provide ozone and monovalent oxygen from a supplied volume of a suitable 02-containing gas. The conversion cell is provided with at least one metal mesh electrode within a generator reaction chamber, and a power supply which is adapted to supply a high alternating electric current voltage to at least partially break-down O2 in the input gas to yield ozone. A fluid flow passage extends through the reaction chamber as a generally elongated passage through the reaction cavity. The fluid flow passage extends from an upstream end, where the O2-containing gas is initially supplied into the housing, to a downstream end where treated gas either flows outwardly therefrom under pressure or is evacuated from the housing. In a simplified construction, the fluid flow passage is delineated by a series of electrically insulating plates and/or spacers which are used to partition the reaction cavity.
Abstract:
An ozone generating apparatus is provided which includes a pair of electrodes for producing a discharge by the application of an ac voltage therebetween, and at least one dielectric provided between the pair of electrodes. A source gas containing oxygen is provided into a discharge space in which the discharge is produced to generate ozone by the action of the discharge. A surface lying between at least one of the pair of electrodes and the discharge space and in contact with the discharge has a surface resistivity of 104 Ω to 1011 Ω. The source gas provided into the discharge space includes ultrapure oxygen having a purity of not less than 99.9%.
Abstract:
The present invention offers an operation method of an ozonizer and an ozonizer apparatus to improve ozone gas purity and to achieve long and safety electrolysis operation in such manner that, during normal operation of the ozonizer, ozone gas is generated at the anode in the anode compartment and hydrogen gas is generated at the cathode in the cathode compartment; and only when the ozonizer is stopped and operation is switched to protective current operation during which minute electric current is supplied to protect said anode, oxygen-containing gas is supplied to said cathode compartment after electrolyte and hydrogen gas in said cathode compartment are all drained out, so that said cathode is made function as a gas electrode for oxygen reduction reaction, using said cathode as a reversible electrode with two functions as a gas generation electrode and a gas electrode, thereby during normal operation, ozone is generated efficiently, and during the protective current operation, when safety is a key issue, hydrogen gas is not generated at the cathode and mingling of hydrogen gas into ozone gas generated at the anode is prevented.