摘要:
A limestone furnace calcination process involves injecting finely divided limestone particles into a zone in a furnace at which the temperature of the flue gas stream, as it passes through the zone, is above the minimum calcination temperature and below the minimum effective quicklime utilization/sulfation temperature. In conventional furnaces, the minimum calcination temperature, or the calcium carbonate decomposition temperature, ranges from about 1,365 to 1,430° F. The minimum effective quicklime utilization/sulfation temperature refers to the temperature below which the rate of quicklime sulfation of the lime produced by calcination of the limestone is sufficiently slow to result in negligible calcium sulfate formation on the resultant lime, and in conventional furnace applications ranges from 1,600 to 1,800° F. The zone is preferably sized such that limestone particles injected therein will remain at a temperature above the minimum calcination temperature, as the particles are carried downstream, for a period sufficient for substantially complete calcination of the limestone particles to lime while minimizing reactions between the resultant lime particles and sulfur dioxide to form calcium sulfate while the particles are in the furnace and to minimize sintering of the lime and complex calcium compound formation. The resultant lime particles may then be utilized in conventional downstream flue gas desulfurization processes including wet and semi-dry processes.
摘要:
This invention discloses a synthetic gypsum and gypsum boards produced therefrom. Limestone (Calcium Carbonate), slaked lime (calcium hydroxide), water, and sulfuric acid are mixed, and alpha hemihydrate gypsum is optionally added as crystal seed to produce synthetic gypsum. The synthetic gypsum is then used to make gypsum boards. The gypsum board produced according to this invention contains at least 10% alpha hemihydrate gypsum.
摘要:
Aspects of the invention include a method of producing a cement material comprising step of: first reacting a calcium-bearing starting material with a first acid to produce an aqueous first calcium salt; second reacting the aqueous first calcium salt with a second acid to produce a solid second calcium salt; wherein the second acid is different from the first acid and the second calcium salt is different from the first calcium salt; and thermally treating the second calcium salt to produce a first cement material. Preferably, but not necessarily, during the second reacting step, reaction between the first calcium salt and the second acid regenerates the first acid.
摘要:
Aspects of the invention include a method of producing a cement material comprising step of: first reacting a calcium-bearing starting material with a first acid to produce an aqueous first calcium salt; second reacting the aqueous first calcium salt with a second acid to produce a solid second calcium salt; wherein the second acid is different from the first acid and the second calcium salt is different from the first calcium salt; and thermally treating the second calcium salt to produce a first cement material. Preferably, but not necessarily, during the second reacting step, reaction between the first calcium salt and the second acid regenerates the first acid.
摘要:
A process for producing a mineral foam includes (i) separately preparing one or more slurries of cement, and an aqueous foam for which a D50 of bubbles is less than or equal to 400 μm; (ii) homogenizing the one or more slurries of cement with the aqueous foam to obtain a slurry of foamed cement; (iii) casting the slurry of foamed cement and leaving the cast slurry of foamed cement to set.
摘要:
Provided are cementitious compositions and related systems and methods. The cementitious compositions, or admixtures, according to the present invention generally comprise gypsum, a first alkaline component and glass. The admixture may further comprise fly ash, which is preferably obtained as a waste by-product from a coal-burning power plant. A method according to the present invention comprises an initial step of analyzing or receiving an analysis of a fly ash sample. Based at least in part on the analysis of the fly ash sample, a mix rate may be selected and an initial admixture can be formulated, which, when added to the fly ash sample, creates an alternative or additive to Portland cement for use in concrete, for example.
摘要:
A method for providing effective mercury release control during gypsum calcination is disclosed. The method comprises providing a reactor and gypsum containing mercury; providing a mercury sorbent, such as activated carbon and/or derivatives thereof in the reactor; and calcining the gypsum in the reactor to form stucco. The mercury contaminant present in the gypsum is sorbed by the mercury sorbent during the calcination process. The mercury content of the stucco is substantially similar in amount to the mercury content of the uncalcined gypsum.
摘要:
A limestone furnace calcination process involves injecting finely divided limestone particles into a zone in a furnace at which the temperature of the flue gas stream, as it passes through the zone, is above the minimum calcination temperature and below the minimum effective quicklime utilization/sulfation temperature. In conventional furnaces, the minimum calcination temperature, or the calcium carbonate decomposition temperature, ranges from about 1,365 to 1,430.degree. F. The minimum effective quicklime utilization/sulfation temperature refers to the temperature below which the rate of quicklime sulfation of the lime produced by calcination of the limestone is sufficiently slow to result in negligible calcium sulfate formation on the resultant lime, and in conventional furnace applications ranges from 1,600 to 1,800.degree. F. The zone is preferably sized such that limestone particles injected therein will remain at a temperature above the minimum calcination temperature, as the particles are carried downstream, for a period sufficient for substantially complete calcination of the limestone particles to lime while minimizing reactions between the resultant lime particles and sulfur dioxide to form calcium sulfate while the particles are in the furnace and to minimize sintering of the lime and complex calcium compound formation. The resultant lime particles may then be utilized in conventional downstream flue gas desulfurization processes including wet and semi-dry processes.
摘要:
In general, the present invention is directed to a method of making a gypsum board. The method comprises: applying a phosphorus containing compound to a first gypsum composition to provide a phosphorus modified gypsum composition; calcining the phosphorus modified gypsum composition to provide a calcined gypsum composition; preparing a gypsum slurry by combining water and the calcined gypsum composition; depositing the gypsum slurry on a first facing material; providing a second facing material on the gypsum slurry; and allowing the calcined gypsum to convert to calcium sulfate dihydrate.
摘要:
The present disclosure relates generally to methods for producing stucco compositions useful in making gypsum products. One aspect of the disclosure is a method for producing a stucco composition using dielectric calcination. Another aspect of the disclosure is a production process for a gypsum product using a stucco composition prepared by dielectric calcination.