Abstract:
A process for distillative removal of ammonia from solutions (I) which include a lactam and ammonia comprises effecting said removal in a distillation apparatus (a) at an absolute pressure of less than 10 bar.
Abstract:
A process for purifying N-vinyl-null-caprolactam comprises converting the N-vinyl-null-caprolactam which is to be purified and has a purity of at least 95% by weight into a melt, partially crystallizing the melt and separating the crystals from the mother liquor.
Abstract:
The present invention relates to a process for purifying an impure stream of caprolactam while recovering not only pure caprolactam but also medium-to-high pressure steam. Preferably, the stream of impure or crude caprolactam, which comprises at a minimum a substantial portion of water, is obtained from depolymerization of a polyamide-containing composition. The resulting purified caprolactam will have a purity greater than 90 weight percent and the recovered steam will have a temperature sufficiently high to provide a driving force for use with other equipment, for instance, heat exchange equipment.
Abstract:
The invention relates to a process for the separation of a ketoxime or aldoxime from a ketoxime- or aldoxime-containing amide mixture in which the ketoxime or aldoxime is separated from the amide mixture by means of distillation. This has proved to be a very simple and direct method for separating the ketoxime and/or aldoxime from the desired amide.
Abstract:
The invention relates to a process for the purification of crude &egr;-caprolactam, wherein crude &egr;-caprolactam prepared by cyclization of alkyl 6-aminocaproate, 6-aminocapronitrile, 6-aminocaproic acid, 6-aminocaproic amide and/or oligomers thereof, is subjected to a crystallization process.
Abstract:
The present invention provides an improved process for the recovery of caprolactam from polycaprolactam processing waste. The present process for depolymerizing polycaprolactam waste to form caprolactam comprises the step of: in the absence of added catalyst, contacting the polycaprolactam waste with superheated steam at a temperature of about 250.degree. C. to about 400.degree. C. and at a pressure within the range of about 1.5 atm to about 100 atm and substantially less than the saturated vapor pressure of water at the temperature wherein a caprolactam-containing vapor stream is formed.The formed caprolactam may then be used in the production of engineered resins and fibers.
Abstract:
Caprolactam is recovered from oligomers and/or polymers of caprolactam by cleavage of oligomers and/or polymers of caprolactam and subsequent working up by distillation of the caprolactam obtained in the cleavage, by a process including (a) cleaving oligomers and/or polymers of caprolactam to obtain an aqueous reaction mixture which contains caprolactam, (b) removing water from the reaction mixture obtained under (a) to obtain a residue, (c) distilling the residue obtained under (b) in an acidic medium and (d) then distilling the distillate in an alkaline medium to obtain caprolactam, or (c') distilling the residue obtained under (b) in an alkaline medium and (d') then distilling the distillate in an acidic medium to obtain caprolactam.
Abstract:
A process for producing a high purity caprolactam is disclosed in which a crude caprolactam obtained by a catalytic rearrangement of cyclohexanone oxime is subjected(1) to mixing, while stirring, with at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons to form a liquid-liquid, two-layer liquid mixture, and then crystallizing caprolactam out of the liquid mixture;(2) to mixing with both at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons, and water to form a liquid mixture, separating the liquid mixture into a hydrocarbon layer and a water layer, and then recovering caprolactam from the water layer; or(3) to distillation in the co-presence of at least one aliphatic saturated hydrocarbon of 10 to 18 carbon atoms.
Abstract:
A process for producing a high purity caprolactam is disclosed in which a crude caprolactam obtained by a catalytic rearrangement of cyclohexanone oxime is subjected(1) to mixing, while stirring, with at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons to form a liquid-liquid, two-layer liquid mixture, and then crystallizing caprolactam out of the liquid mixture;(2) to mixing with both at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons, and water to form a liquid mixture, separating the liquid mixture into a hydrocarbon layer and a water layer, and then recovering caprolactam from the water layer; or(3) to distillation in the co-presence of at least one aliphatic saturated hydrocarbon of 10 to 18 carbon atoms.
Abstract:
Frozen crystal layers are purified by a process in which these crystal layers, after they have been frozen out from a melt or solution on a cooling surface, are brought into contact with a purifying liquid and thus purified over their entire thickness, after which the said layers are separated from the purifying liquid and then melted, wherein the temperature of the crystal layers and of the purifying liquid is close to the melting point or solubility temperature, mass transfer at the phase boundary is intensified by forced convection, and this purification is carried out in the course of from 1 to 60 minutes on layers having a thickness of from 0.2 to 10 mm.