摘要:
A shaft control method and device for a magnetic suspension system. The shaft control method for the magnetic suspension system includes: acquiring a displacement signal obtained by detecting displacement of a shaft in the magnetic suspension system (Step 101); separating whirling displacement from the displacement signal (Step 102); and controlling whirling of the shaft according to the whirling displacement (Step 103). By the disclosure, the effect of suppressing the whirling of the shaft during high-speed rotation of the magnetic suspension system is achieved.
摘要:
A method of detecting a vibration node between a non-collocated sensor-actuator pair of a rotatable component includes applying an excitation signal to an actuator of the sensor actuator pair. The method also includes obtaining frequency response data from the sensor-actuator pair. The method further includes analyzing the frequency response data to ascertain a resonant frequency of the rotatable component. The method includes identifying a resonance/anti-resonance peak pair in the frequency response data for the non-collocated sensor-actuator pair. Furthermore, the method includes determining whether the vibration node is located between a sensor and the actuator of the non-collocated sensor-actuator pair based on the resonance/anti-resonance peak pair.
摘要:
A magnetic bearing for the mounting of a shaft (7), in particular for a spinning rotor of an open-end spinning device, features several pole shanks (2) of a stator (1) for the active radial magnetic mounting of the shaft (7) in two degrees of freedom, which in each case are surrounded by a coil (6) and are radially arranged to each other, whereas the pole shanks (2) are arranged at each other in such a manner that they release an opening (4) for the shaft (7). In the area of the opening (4), and on the side of the coils (6) turned away from the opening (4), the pole shanks (2) are connected to each other. In particular, for the passive axial mounting of the shaft (7), at least one permanent magnet (10) is arranged between the coils (6) and the opening (4); this is in operative connection with the pole shanks (2). A shaft (7) for mounting with at least one corresponding magnetic bearing is a composite component, which at least partially consists of non ferromagnetic material. In the area of the radial and (if applicable) axial mounting, a component made of a ferromagnetic material is arranged. A shaft mounting, in particular for a rotatable shaft of a spinning rotor in an open-end spinning device, features, for the passive axial mounting of one degree of freedom of the shaft (7) and for the active radial mounting of two degrees of freedom of the shaft (7), at least one, preferably two, corresponding magnetic bearings.
摘要:
A superconductivity utilizing support mechanism comprises a superconductive coil and a ferromagnetic body. One of the ferromagnetic body, so constituted as to slide in a direction of a center axis of the superconductive coil, and the superconductive coil, so constituted as to slide in a direction of the center axis thereof, is floated and supported relative to the other by axial magnetic attraction caused by a center plane of the superconductive coil and a center plane of the ferromagnetic body moving apart from each other.
摘要:
A radial, active magnetic bearing apparatus comprising at least three electromagnets which are distributedly arranged is excited by a three-phase rotary current controller.
摘要:
An active type magnetic bearing system includes magnetic bearings for suspending a rotary body to permit it to rotate about its rotational axis. A control system supplies the magnetic bearings with signals to control the radial position of the rotary body, and comprises displacement detecting circuits for detecting any displacement of the radial position of the rotary body and a control circuit for producing a control signal which serves to suppress any unstable vibration of the rotary body.
摘要:
A controlled type magnetic bearing device which has at least two radius direction magnetic bearings, characterized in that the radius direction magnetic bearing control device has either or both of a static unbalance compensator for suppressing a whirling caused by static unbalance and a dynamic unbalance compensator for suppressing a whirling caused by dynamic unbalance.
摘要:
A magnetic bearing assembly for a rotor, including at least two actively regulated magnetic bearings for stabilizing the rotor in directions oriented substantially perpendicularly to one another and to the axis of rotation. The magnetic bearings define a bearing plane oriented perpendicularly to the axis. The rotor has a center of gravity situated at an axial distance from the bearing plane whereby tilting motions of the rotor about tilt-axes perpendicular to the axis of rotation can be sensed and counteracted.
摘要:
A method of detecting a vibration node between a non-collocated sensor-actuator pair of a rotatable component includes applying an excitation signal to an actuator of the sensor actuator pair. The method also includes obtaining frequency response data from the sensor-actuator pair. The method further includes analyzing the frequency response data to ascertain a resonant frequency of the rotatable component. The method includes identifying a resonance/anti-resonance peak pair in the frequency response data for the non-collocated sensor-actuator pair. Furthermore, the method includes determining whether the vibration node is located between a sensor and the actuator of the non-collocated sensor-actuator pair based on the resonance/anti-resonance peak pair.
摘要:
A command procedure for an active magnetic bearing, the magnetic bearing comprising a series of electromagnetic actuators forming a stator, each actuator being suitable for exerting radial force on the rotor, a ferromagnetic body forming a rotor, kept free of contact between the electromagnetic actuators and suitable for being set in rotation around an axis of rotation, the rotor being suitable to undergo precession movements in particular. Sensors suitable for detecting radial displacements of the rotor and issuing position signals representative of the radial position of the rotor in relation to the actuators. Calculation of at least one actuator command signal the calculation of the command signal consisting of the application of at least one transfer function to the position signals, the transfer function containing a number of correction coefficients.