Abstract:
An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode (24) with an exit aperture (12) in a position opposite a first dynode 10a, from which the ions are sputtered, two opposing cathodes (14, 16), each with an anode (18, 20) for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor (22) immediately outside the exit aperture of the second dynode is maintained at ground potential during this entire period of sputtering while the anode, dynode and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. In that manner, material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam. Atoms sputtered from the second dynode which do not become ionized and exit through the slit will be redeposited on the first dynode, and hence recycled for further ion beam generation during subsequent operating cycles.
Abstract:
A cold-cathode ion source includes a specially shaped hollow anode and specially shaped anode-cathode insulators to preclude the buildup of short-circuiting bridges of sputtered cathode material. When used with solid feed material, the source can also include an oven-anode having cavities for vaporizing the solid feed material and passages connecting the cavities to the bore of the anode. The geometry of the oven-anode provides an increasing temperature gradient from the cavities to the bore that minimizes condensation of vaporized feed material that could block the ports.
Abstract:
A radiation generator includes at least three extractor electrodes, with an ion source upstream of the at least three extractor electrodes to emit ions in a downstream direction toward the at least three extractor electrodes. There is a target downstream of the at least three extractor electrodes. The at least three extractor electrodes have independently selectable potentials so as to allow direction of an ion beam, formed from the ions, by the independently selectable potentials, toward different longitudinal and lateral regions of the target.
Abstract:
This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.
Abstract:
An ion generator (10) generally includes: a shielding shell (11), a cathode device (16), and an annular anode (14). The shielding shell has a first end (113), an opposite second end (115) and a main body (111) therebetween. The first end has an electron-input hole (13). The second end has an ion-output hole (15). The main body has a gas inlet (170) for introducing an ionizable gas (170). The cathode device faces the electron-input hole for emitting electrons to enter the shielding shell so as to ionize the ionizable gas thereby generating ions. The cathode device includes a conductive base (160) and at least one field emitter (161) thereon. The annular anode is arranged in the shielding shell. The anode is aligned with the ion-output hole.
Abstract:
The invention provides methods and apparatus for generating helium ions. The methods involve providing a mixture of helium gas with a second gas in an ion source. The second gas has a lower ionization potential and larger molecules than that of helium. The helium gas is ionized by generating an arc discharge within the ion source. The presence of the second gas enhances the ionization of the helium gas. The increased helium ionization enables formation of helium ion beams having a high beam currents suitable for implantation.