Abstract:
An ion pump has an exterior magnet and a chamber wall defining an interior. The interior contains an anode having an exterior surface extending around an axis and defining an opening wherein the axis passes through the opening and a post made of ferrous material, aligned with the axis of the anode and positioned between the exterior magnet and the anode.
Abstract:
An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
Abstract:
An apparatus for the creation of high current ion beams is disclosed. The apparatus includes an ion source, such as a RF ion source or an indirectly heated cathode (IHC) ion source, having an extraction aperture. Disposed proximate the extraction aperture is a bias electrode, which has a hollow center portion that is aligned with the extraction aperture. A magnetic field is created along the perimeter of the hollow center portion, which serves to contain electrons within a confinement region. Electrons in the confinement region energetically collide with neutral particles, increasing the number of ions that are created near the extraction aperture. The magnetic field may be created using two magnets that are embedded in the bias electrode. Alternatively, a single magnet or magnetic coils may be used to create this magnetic field.
Abstract:
An apparatus and method for the creation of negative ion beams is disclosed. The apparatus includes an RF ion source, having an extraction aperture. An antenna disposed proximate a dielectric window is energized by a pulsed RF power supply. While the RF power supply is actuated, a plasma containing primarily positive ions and electrons is created. When the RF power supply is deactivated, the plasma transforms into an ion-ion plasma. Negative ions may be extracted from the RF ion source while the RF power supply is deactivated. These negative ions, in the form of a negative ribbon ion beam, may be directed toward a workpiece at a specific incident angle. Further, both a positive ion beam and a negative ion beam may be extracted from the same ion source by pulsing the bias power supply multiple times each period.
Abstract:
The IHC ion source comprises an ion source chamber having a cathode and a repeller on opposite ends. The ion source chamber is constructed of a ceramic material having very low electrical conductivity. An electrically conductive liner may be inserted into the ion source chamber and may cover three sides of the ion source chamber. The liner may be electrically connected to the faceplate, which contains the extraction aperture. The electrical connections for the cathode and repeller pass through apertures in the ceramic material. In this way, the apertures may be made smaller than otherwise possible as there is no risk of arcing. In certain embodiments, the electrical connections are molded into the ion source chamber or are press fit in the apertures. Further, the ceramic material used for the ion source chamber is more durable and introduces less contaminants to the extracted ion beam.
Abstract:
An instrument producing a charged particle beam according to the present invention is provided with: a charged particle source; a plurality of first electrodes disposed along a direction of irradiation of charged particles from the charged particle source; a plurality of insulation members disposed between the first electrodes; and a housing mounted around the plurality of first electrodes. The housing is formed from an insulating solid material, and includes a plurality of second electrodes disposed at positions in proximity to the plurality of first electrodes. At least one of the plurality of second electrodes is electrically connected to at least one of the plurality of first electrodes, each of the plurality of second electrodes having the same potential as the potential of the proximate one of the first electrodes.
Abstract:
A system and method of improving the performance and extending the lifetime of an ion source is disclosed. The ion source includes an ion source chamber, a suppression electrode and a ground electrode. In the processing mode, the ion source chamber may be biased to a first positive voltage, while the suppression electrode is biased to a negative voltage to attract positive ions from within the chamber through an aperture and toward the workpiece. In the cleaning mode, the ion source chamber may be grounded, while the suppression electrode is biased using a power supply having a high current capability. The voltage applied to the suppression electrode creates a plasma between the suppression electrode and the ion source chamber, and between the suppression electrode and the ground electrode.
Abstract:
Provided herein are approaches for improving ion beam extraction stability and ion beam current for an ion extraction system. In one approach, a source housing assembly may include a source housing surrounding an ion source including an arc chamber, the source housing having an extraction aperture plate mounted at a proximal end thereof. The source housing assembly further includes a vacuum liner disposed within an interior of the source housing to form a barrier around a set of vacuum pumping apertures. As configured, openings in the source housing assembly, other than an opening in the extraction aperture plate, are enclosed by the extraction aperture plate and the vacuum liner, thus ensuring appendix arcs or extraneous ions produced outside the arc chamber remain within the source housing. Just those ions produced within the arc chamber exit the source housing through the opening of the extraction aperture plate.
Abstract:
Ion optics for use in a conventional or annular or other shaped ion thruster are disclosed including a plurality of planar, spaced apart ion optic electrode pairs sized to include a diameter smaller than the diameter of thruster exhaust and retained in, on or otherwise associated with a frame across the thruster exhaust. An electrical connection may be provided for establishing electrical connectivity among a set of first upstream electrodes and an electrical connection may be provided for establishing electrical connectivity among the second downstream electrodes.
Abstract:
This invention relates to the field of mass spectrometry, and more specifically to a vacuum ultraviolet photoionization and chemical ionization combined ion source, which consists of a vacuum ultraviolet light source and an ion source chamber. An ion acceleration electrode, an ion repulsion electrode, an ion extraction electrode, and a differential interface electrode positioned inside the ion source chamber are arranged along the exit direction of the vacuum ultraviolet light beam in sequence and spaced, coaxial, and parallel from each other. The ion acceleration electrode, the ion repulsion electrode, the ion extraction electrode, and the differential interface electrode are all plate structures with central through holes. The vacuum ultraviolet light beam passes through the central through holes of the electrodes along the axial direction. By utilizing a single vacuum ultraviolet light source, the ion source is feasible to switch between two ionization modes, vacuum ultraviolet photoionization (VUV PI) and chemical ionization (CI), under suitable ion source pressure, thus greatly expanding the range of detectable samples.