Abstract:
The invention relates to a medical imaging device using X or gamma ionizing radiation. It comprises a source (S) of radiation in a divergent beam, and a longitudinal slit (F) delivering a sheet-form beam in a plane containing the slit (F). A detection module (1) is provided, which comprises a drift chamber (12) and a multiwire chamber which are filled with a gas. The chambers comprise, in a direction orthogonal to the plane containing the slit (F), the drift space (12) for the electrons, comprising a cathode electrode (11), a converter (121), a proportional multiplier anode (13) for generating multiplied electrons and corresponding ions, and a second cathode electrode (14), placed in the vicinity of the multiplier anode (13). The multiplier anode (13) and the second cathode electrode (14) consist of conductor elements extending in two parallel planes, along substantially orthogonal directions, in order to permit two-dimensional localization of the electrons in this plane.
Abstract:
A drift tube construction includes a thin wall aluminum tube with a thin wire at its center attached to a terminal. The tube is plugged at both ends. The terminal is embedded at the center of the plug with material insulating it from Drift tube main body. The Drift tube assembly is sealed and filled with a gas mixture. A voltage is applied to the thin wire via the terminal. Current drift tubes employ plastic material to insulate the terminal from Drift tube main body and O-rings to provide a near hermetic seal.
Abstract:
A detection apparatus for detecting an electron cloud includes a resistive anode layer with a detection plane upon which the electron cloud is incident. The resistive layer is capacitively coupled to a readout structure having a conductive grid parallel to the detection plane. Charge on the resistive layer induces a charge on the readout structure, and currents in the grid. The location of the induced charge on the readout structure corresponds to the location on the detection plane at which the electron cloud is incident. Typically, the detection apparatus is part of a detector, such as a gas avalanche detector, in which the electron cloud is formed by conversion of a high-energy photon or particle to electrons that undergo avalanche multiplication. The spacing between the anode layer and the readout structure is selected so that the width of the charge distribution matches the pitch between conductive segments of the grid. The resistivity of the anode layer is selected to be low enough to support the highest bandwidth of the readout electronics, but high enough to allow penetration of the charge through the anode layer to the readout structure.
Abstract:
An improved ion mobility spectrometer (IMS) and method for operating the same which enables analysis of a specific acid gas analyte in a mixture of such gases when air is used as the carrier gas and the drift gas in the IMS. A controlled concentration of sulfur dioxide dopant is added to the air carrier gas stream prior to application of the carrier gas stream. In the IMS, the drift times of the ions generated from the doped air carrier gas differ from the drift times of the ions generated from the acid gas analyte, thereby enabling identification and quantification of the analyte.
Abstract:
A process for manufacturing straw tube drift chambers in an array configuration is provided. The process of manufacturing the straw tubes includes the construction of an array of tube sections, followed by the positioning of a conductive wire, and then closing the tubes. The completed straw tube array, when filled with ionizable gases, are configured about a particle accelerator collision point to provide a means for detecting the products of the collision (secondary particles) as they pass through the straw tube chambers.
Abstract:
An X-ray gas detector for analyzing a material by studying X-ray diffraction. In order to minimize the parallax error without resorting to auxiliary electrodes, difficult to manufacture, a radial field in the whole gas space (40) is generated only by means of input electrodes (36) set to appropriate voltages and by means of lateral electrodes (44) also individually set to appropriate voltages. By modifying the voltages, it is also possible to move the center of the spheric equipotentials for permitting the analysis without parallax error of samples (20) placed at variable distances (D) from mthe input window (32) of the detector.