Abstract:
A gain switching circuit switches a conversion gain of a preamplifier that is configured with a series circuit formed with a first resistor and a first switching element and a series circuit formed with a second resistor and a second switching element respectively connected in parallel with a feedback resistor. The gain switching circuit includes a first operating unit that generates a first switching element operating signal for closing the first switching element within a first gain switching period, and a second operating unit that generates a second switching element operating signal for closing the second switching element within a second gain switching period.
Abstract:
Disclosed is a method for controlling power level of received signal in an ultra wide band transmission system which uses multi frequency bands, and includes a pre-gain controller (PGC) and a voltage gain amplifier (VGA). The method for controlling a power level of a received signal includes the steps of: a) at the PGCs, detecting which multi frequency band is used in a transmitter of the transmission system; b) at the PGCs, obtaining the voltage gain owing to the discrepancy in the power levels of the received signals; and c) at the PGCs, compensating for the power loss based on the voltage gain.
Abstract:
An amplifier having programmable operational characteristics and a serial communications interface are fabricated on an integrated circuit (IC). The serial communications interface controls the operational characteristics, e.g., gain, frequency response, etc., of the amplifier. A multiplexer (MUX) may also be included on the IC and may be controlled by the serial communications interface. Status of the amplifier may also be obtained through the serial communications interface. The pin count of the IC package may be kept to a minimum by using the serial communications interface.
Abstract:
The present invention provides a switchable gain amplifier comprising a high-pass filter pole. The switchable gain amplifier comprises first and second input nodes for receiving first and second components of a differential input signal. A first input terminal of a first differential amplifier is coupled to the first input node, and a first input terminal of a second differential amplifier is coupled to the second input node. A first variable resistance is coupled between the first input terminal of the first differential amplifier and a second input terminal of the first differential amplifier. A second variable resistance is coupled between the first input terminal of the second differential amplifier and a second input terminal of the second differential amplifier. A differential capacitor is coupled between the second input terminal of the first differential amplifier and the second input terminal of the second differential amplifier.
Abstract:
At least two innovations are used to overcome the limitations of conventional transimpedance or high impedance optical receiver front end amplifiers. The innovations are a) multiple stage equalization of a high-feedback resistor, low-gain transimpedance amplifier to obtain high sensitivity, and b) range switching of feedback resistors and equalization capacitors to obtain high overload. With these approaches, it is possible to design an optical receiver operating at the intrinsic limits of available device technology.