Abstract:
Disclosed herein is a DC offset cancellation circuit. The DC offset cancellation circuit includes a DC feedback unit configured to vary a DC feedback (DCFB) bandwidth to add at least one mid-bandwidth to the DCFB bandwidth and to provide a delay time in each case in order to reduce the DC droop error that occurs in switching from the high bandwidth (BW) to the mid-BW or from the mid-BW mode to the low BW mode, such that stable settling is ensured.
Abstract:
An AGC circuit for a radio receiver includes a detector converting a high frequency signal into a baseband signal. To reduce generation of a DC offset, the AGC circuit includes: a variable gain amplifier having an amplifier circuit and a high-pass filter, the amplifier circuit amplifying the baseband signal with a variable gain and the high-pass filter coupled to the amplifier circuit and having a cut-off frequency which is variable; a controller supplying a gain control signal; and a blocker temporarily blocking the high frequency signal. Using the block control signal, the controller causes the blocker to start blocking the high frequency signal, before the cut-off frequency of the high-pass filter is switched from high to low.
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
An automatic gain control (AGC) controls the signal amplitude at the input to an analog to digital converter (ADC) input by applying a gain that produces a desired overall amplitude resolution of the patterns actually presented by the signal delivered by the ADC converter. Short RLL patterns will have sufficient resolution for reliable extraction as a result of having sufficient overall amplitude, which thereby strengthens the ability of the read channel to correctly extract data. Moreover, the system determines correct AGC settings responsive to measurements of user data parameters. The system also detects and corrects for DC offsets in the signal whose gain is controlled.
Abstract:
A translation loop modulator and power amplifier in a phase and amplitude modulated transmission environment includes a translation loop having a phase locked loop and that is configured to receive a first modulated signal (PM) and that is also configured to provide a frequency specific modulated signal. The invention also includes a power amplifier configured to receive the frequency specific modulated signal, a variable gain element configured to provide a second modulated signal (AM) to the power amplifier and a switching element configured to receive a portion of an output of the translation loop and a portion of an output power of the power amplifier. The switching element is configured to apply the output portion of the translation loop to an input of the translation loop during a first time period and apply the detected output power portion of the power amplifier to the input of the translation loop during a second time period, thus allowing the phase locked loop in the translation loop to correct for any phase shift caused by the power amplifier.
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
A method for processing a plurality of signals may include amplifying an input signal and generating a wideband signal from the amplified input signal. The method may further include bandpass filtering the generated wideband signal to generate a narrowband signal, and adjusting amplification of the input signal based on a narrowband received signal strength indication of the generated narrowband signal, and/or a wideband received signal strength indication of the generated wideband signal. The amplified input signal may be downconverted to generate the wideband signal. The amplified input signal may be downconverted to an intermediate frequency (IF) and/or to a baseband signal to generate the wideband signal. At least one blocker signal may be bandpass filtered from the amplified input signal.
Abstract:
A radio receiver includes a branching unit, a first gain-control system, a second-gain control system, and a signal processing unit. The branching unit branches a radio signal received by the radio receiver into two signals. The first-gain control system performs a gain control of a pilot signal in one of branched signals, and the second gain control system performs a gain control of a data signal in another of the branched signals. The signal processing unit synchronizes frames in the received radio signal. The signal processing unit outputs a gain signal to each of the first gain-control system and the second gain-control system. The first gain-control system and the second gain-control system perform the gain controls based on the gain signal.
Abstract:
A digital automatic gain control circuit is disclosed. The circuit includes a selector, a scaler, a detector, a gain adjustor and a controller. In one exemplary aspect, the selector receives an input signal having two components, namely, the in-phase (I) and quadrature (Q) components, in digital form. The selector then selects a subset of bits from each component based on a control signal provided by the controller. The two subsets are then forwarded to the scaler. The scaler then multiplies the two subsets respectively against a gain value to generate two multiplication results. A portion of each multiplication result is then provided as output by the scaler. The gain value and the subset selection are periodically adjusted in response to the scaler output. The adjustments with respect to the gain value and the subset selection are effectuated collectively by the detector, the gain adjustor and the controller.
Abstract:
In communication systems where the channel is expected to vary during a communication burst, gain adjustments during the communication burst can be implemented by automatic gain control (AGC) in the receiver, with minimal performance degradation. These gain adjustments are successfully accommodated by virtue of suitable information-sharing between an AGC unit and a digital baseband part. The digital baseband part can direct the AGC unit appropriately to ensure that gain adjustments are implemented during time intervals that do not carry substantive communication information (e.g., guard intervals). In receivers that perform channel estimation in the digital baseband part, the AGC unit supports channel estimation by informing the digital baseband part about the timing of the gain adjustment. The AGC unit can also support channel estimation by informing the digital baseband part about the size of the gain adjustment.