Abstract:
An adaptive transmission scheme provides multiple levels of adaptation. At a first level, a selection is made between a limited feedback or limited feedback scheme and a rich feedback scheme. At a second level of adaptation, a diversity mode is selected. Additional levels of adaptation could be employed.
Abstract:
A method of transmitting communication signals to a plurality of targeted receivers includes transmitting one or more information streams for individual ones of the targeted receivers according to ongoing transmission scheduling, and controlling the ongoing transmission scheduling to reduce the number of impairment contributors that must be considered in received signal processing by scheduled ones of the targeted receivers. In one embodiment the controlling comprises scheduling the targeted receivers to avoid transmissions to more than one targeted receiver at a time. In the same or another embodiment, the controlling comprises at least one of using equal transmit power allocations for one or more information streams, and using fixed transmit power allocations for one or more of the information streams.
Abstract:
The technology comprises method(s) and apparatus for operating a telecommunications system. In its basic form the method comprises providing plural channelization codes for potential use by an uplink receiver; using unused channelization codes of the plural codes to generate an estimate of an impairment covariance matrix; and using the estimate of the impairment covariance matrix to form a processing parameter. For example, the processing parameter can be one or more weight values which, in turn, are can be used for generating a combined output signal.
Abstract:
A method and arrangement of increasing impairment co-variance matrix Ru estimation accuracy in downlink in a user equipment in a communication network system. De-spread is performed on HS-DSCH symbols to form a matrix X of de-spread symbols. The matrix X and channel estimates hc from CPiCH and modulation scheme information are used to form a matrix S of recovered symbols in hard value. The matrix X and the channel estimates hc, the modulation scheme information and the matrix S output are used to increase the estimation accuracy of the matrix S. The previous step is repeated until the output symbols are the same as the input symbols or the number of iterations reaches a pre-defined maximum value. The matrix X and the matrix S with increased estimation accuracy are used to form an impairment co-variance matrix Ru estimate.
Abstract:
Outer-loop power control methods and apparatus are disclosed. In an exemplary embodiment, a short-term block error rate is measured for a received signal, and a coarse adjustment to a target signal-to-interference ratio (SIR) is calculated as a function of the short-term block error rate, a target block error rate, and a first loop tuning parameter. In some embodiments, a fine adjustment to the target SIR is also calculated, as a function of a smoothed block error rate, the target block error rate, and a second loop tuning parameter. The coarse adjustment provides quick responsiveness to received block errors, while the fine adjustment moderates the coarse adjustments by accounting for a longer-term view of the received block error rate. The target SIR adjustments disclosed herein may be computed in each of several iterations of an outer-loop power control loop.
Abstract:
A method for simplifying calculations for pre-whitening in a G-RAKE receiver, comprising receiving at least two signals with at least two antennas via a channel, where each one of said received signals comprises time delayed and attenuated versions of the original signals. Each received signal forms a corresponding vector of received signal versions and the vectors form a matrix of received signals, where, due to correlation between the antennas, the received signals are correlated. Each version also comprises a certain amount of colored noise. The correlating effect of the antennas is estimated and formulated in matrix form and used to acquire essentially uncorrelated received signal vectors in an essentially uncorrelated received signal matrix. A calculated inverse of a covariance matrix of the calculated essentially uncorrelated signal vectors is used to pre-whiten the noise. A G-RAKE receiver arranged for applying the method above.
Abstract:
A receiver and method for receiving and processing a sequence of transmitted symbols in a digital communication system utilizing soft pilot symbols. A set of soft pilot symbols are transmitted with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16 QAM or 64 QAM. The receiver knows the modulation type and location (time/frequency/code) of the soft pilot symbols, and demodulates them first. The receiver uses the demodulated soft pilot symbols as known symbols to estimate parameters of the received radio signal. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols.
Abstract:
A method and apparatus for reducing the computational load associated with computing weighting factors for wireless signals received at a wireless receiver is disclosed herein. The method and apparatus reuses a covariance factor matrix to compute multiple sets of weighting factors for multiple received signals. Particular embodiments factor a covariance matrix determined for a first received signal to determine a covariance factor matrix, and use the covariance factor matrix to determine a set of weighting factors for the first received signal as well as to determine additional sets of weighting factors for one or more additional received signals. The different received signals may be associated with different times, different channelization codes, and/or different frequencies. The weighting factors may be used to weight and combine received signals in a GRAKE receiver or chip equalizer. The weighting factors may also be used to determine a signal quality metric.
Abstract:
The teachings herein disclose methods and apparatus that simplify impairment correlation estimation for received signal processing, based on determining, for any given processing interval, which impairment contributors should be considered in the estimation of overall received signal impairment correlations. These simplifications reduce computational processing requirements, allowing reduced circuit complexity and/or reduced operating power, and improve receiver performance. A corresponding transmitter and transmission method include transmitting multiple information streams to targeted receivers according to ongoing scheduling, and controlling the ongoing scheduling to reduce the number of impairment contributors considered in impairment correlation estimation at the targeted receivers. In one embodiment, a receiver identifies which impairment contributors to consider based on receiving control information. In another embodiment, the receiver identifies the impairment contributors to consider based on background processing, e.g., background determination of parametric model fitting parameters for a plurality of impairment contributors, and observing those model fitting parameters over time.
Abstract:
A model-based technique for estimating impairment covariance associated with a MIMO signal is disclosed. In an exemplary method, an impairment model is constructed for a received composite information signal comprising at least a first data stream transmitted from first and second antennas according to a first antenna weighting vector. The impairment model includes first and second model terms corresponding to the first and second antennas, respectively, but in several embodiments does not include a cross-antenna interference term. In another embodiment, an impairment model for a received MIMO signal is constructed by computing an impairment model term for each antenna and an additional term to account for preceding interference in a single-stream MIMO transmission scenario. The impairment terms are grouped so that only two associated scaling terms are unknown; values for the scaling terms are estimated by fitting the model to measured impairment covariance values.