Abstract:
A heater system is provided that includes a hybrid insulation cover that has a first cover disposed around hinged carrier members and heat trace sections, and a second cover operatively engaged with the first cover and adapted for detachable placement around a heating target and its varying geometries. A flexible insulation jacket having a similar construction as the second cover is also provided for use with connector assemblies. Furthermore, a heater system is provided that includes at least one heat trace section encapsulated within adjacent insulating members for use with heating gaslines and pumplines of semiconductor processing systems.
Abstract:
Disclosed herein is a heat exchanger, comprising at least one electric resistance heating element, at least two conductors which are connected to the at least one electric resistance heating element in an electrically conductive manner in order to conduct electric current through the at least one electric resistance heating element and thereby heat the electric resistance heating element, at least one thermally conductive element for transferring heat from the at least one electric resistance heating element to a fluid to be heated, at least one electrically insulating element, which electrically insulates the at least two conductors, and at least one pipe, wherein the at least two conductors and the at least one electric resistance heating element are arranged within a cavity bounded by the pipe and the pipe lies on the at least one electrically insulating element under a compressive force at at least one contact surface.
Abstract:
A mineral insulated heating cable for a heat tracing system. The heating cable includes a sheath having at least a first, and optionally a second layer, wherein the thermal conductivity of the second layer is greater than a thermal conductivity of the first layer. In addition, the first and second layers are in intimate thermal contact. The heating cable also includes a least one heating conductor for generating heat and a dielectric layer located within the sheath for electrically insulating the heating, conductor, wherein the sheath, heating conductor and dielectric layer form a heating section. In addition, the heating cable includes a conduit for receiving the heating section. Further, the heating cable includes a cold lead section and a hot-cold joint for connecting the heating and cold lead sections. In addition, a high emissivity coating may be formed on the first layer.
Abstract:
The present invention involves a type of small-sized pool and PTC heater for liquid heating. The PTC heating component of PTC heater is composed of several heating cores made of PTC ceramic material, completely eliminating fire risk. Meanwhile, PTC heating component external is equipped with at least one layer of insulation and sealing component, which further includes several insulation layers and at least one sealing layer outside the insulation layer, effectively eliminating electricity leakage risk. Two layers of above mentioned insulation and sealing component could meet the insulation requirements specified in IEC standard and UL standard, so it could be used for applications with large power. In addition, the PTC heater has good water route sealing ability, so it could be used for liquid heating in small size pool. The small-sized pool is equipped with PTC heater with several layers of insulation and sealing for liquid heating, safe and reliable.
Abstract:
A Positive Temperature Coefficient (PTC) rod assembly and a preheater incorporating the same. The PTC rod assembly includes a negative terminal and a positive terminal coupled with opposite surfaces of a PTC rod, the negative and positive terminals being spaced apart from and parallel to each other; a PTC element interposed between and being in electrical contact with the negative and positive terminals, an insulating film adhered to exposed portions of the negative and positive terminals, which are coupled with the PTC rod, and a PTC rod housing. The PTC rod housing stores the PTC rod therein, the negative and positive terminals and the PTC element coupled with the PTC rod, and the insulating film adhered to the PTC rod. The PTC rod assembly is used stably even when a high voltage is applied thereto. A short circuit is prevented from occurring between the two terminals due to contact.
Abstract:
An electrical heating device includes a frame and a layer structure arranged in the frame and comprising layers of corrugated ribs and PTC-based heat generating elements. The electrical heating device includes at least two corrugated-rib elements. The frame has two frame elements forming openings and at least one frame intermediate element arranged between them. A frame, formed solely by the frame elements, forms an accommodation space extending in the passage direction of the medium to be heated, which is appropriately formed for the accommodation of a layer structure with a level of corrugated ribs and heat generating elements. A frame, formed by the frame elements and the frame intermediate element, forms an accommodation space extending in the passage direction of the medium to be heated, which is formed for the accommodation of a layer structure with several levels of corrugated ribs and heat generating elements.
Abstract:
A heat generating element for an electrical heating device of a motor vehicle has a positional frame, which forms a receptacle in which at least one PTC element is accommodated, and additionally has contact plates abutting on two oppositely situated sides of the PTC element. With a view to providing well-insulated support of the PTC element, several supporting points are arranged in circumferential direction of the receptacle.
Abstract:
A heat generating element for heating air in an electric auxiliary heater of a motor vehicle includes at least one PTC heating element and an insulating housing surrounding the PTC heating element as well as electric strip conductors lying against the PTC heating element at opposite sides. The housing is embodied in two parts with a housing shell element and a shell counter element which are lying against each other with the interposition of a sealing strip and sealingly surround the at least one PTC heating element. The present invention further relates to an electric auxiliary heater for a motor vehicle with a layer composition held in a frame, comprising the at least one heat generating element.
Abstract:
An on-vehicle heater according to the invention includes: a heating body unit including a heater element; an electrode member overlapped in contact with the heater element; an insulating sheet enveloping the heater element and the electrode member; and a tube housing the heater element and the electrode member enveloped in the insulating sheet; a radiator unit stacked on the heating body unit; and a cap mounted on an end portion of the heating body unit, the electrode member having a terminal portion being led out of the tube from an end opening of the tube, bent to pass through the cap, and led out of the cap.
Abstract:
A heat exchanger comprises a substantially pillar sheathed heater, a substantially cylindrical case, and a spiral spring. The sheathed heater is accommodated in the case. The spring is provided so as to be wound around an outer peripheral surface of the sheathed heater. Thus, a spiral flow path is formed among an outer peripheral surface of the sheathed heater, an inner peripheral surface of the case, and the spring. The spring functions as a flow velocity conversion mechanism, a turbulent flow generation mechanism, a flow direction conversion mechanism, and an impurity removal mechanism. A water inlet and a water outlet are respectively arranged at positions eccentric from a central axis of the case on a side surface of the case.