Abstract:
A microfluidic device adapted for use with a power source is disclosed. The device includes a substrate and a heater member. The substrate and heater member form a first portion. A second portion is formed adjacent to the first portion. The second portion includes a high activating power polymer portion, at least one resin layer and a shield member. The second portion is selectively shaped to form a thermal expansion portion. A diaphragm member encapsulates the thermal expansion portion so that when power is applied to the heater portion, the high activating power polymer expands against the diaphragm member, causing the diaphragm member to deflect. This device is adapted for use as a microactuator or a blocking microvalve.
Abstract:
The liquid droplet ejection apparatus includes a liquid supply path, a plurality of mutually independent pressurizing chambers, a plurality of liquid introduction bores for establishing communication between the corresponding pressurizing chambers and the liquid supply path, and a plurality of ejection nozzles for establishing communication between the corresponding pressurizing chambers and the exterior of the liquid droplet ejection apparatus. An ejection bore formed at the end portion of the ejection nozzle has a hollow cylindrical form and the inside diameter thereof increases toward an ejection opening. When a potential difference is applied between two electrodes of a piezoelectric/electrostrictive element, a ceramic sheet forming the upper wall of the pressurizing chamber deforms to thereby cause a change of the volume of the pressurizing chamber. Thus, liquid pressure within the pressurizing chamber increases to thereby cause simultaneous ejection of a plurality of liquid droplets from the ejection opening.
Abstract:
A fragrance sampling system for use in a store comprises a piezoelectrically vibrated orifice plate atomizer mounted to extend from a support structure in the store, such as a shelf and operated to emit puffs of very small droplets of the liquid fragrance and eject them upwardly into the atmosphere such that they become fully evaporated before contacting any supporting surface. The atomizer is controlled by electrical circuits which limit the times during which atomization occurs.
Abstract:
A method of applying fluid includes feeding fluid to between two faces disposed with a gap maintained therebetween and changing the gap between the two faces by driving of an actuator for intermittently discharging the fluid filled in between the two faces, wherein an input signal in which a high-frequency component and a DC component are superimposed is given to drive the actuator for changing the gap between two faces, so that the fluid filled in between the two faces is intermittently discharged for fluid application.
Abstract:
The present technique provides a system and method for improving atomization in a spray coating device by internally mixing and breaking up a desired coating fluid prior to atomization at a spray formation section of the spray coating device. An exemplary spray coating device of the present technique has a mixture-inducing valve disposed adjacent a flow barrier upstream of a spray formation exit. The mixture-inducing valve may have a variety of blunt/angled structures and internal passages to facilitate fluid mixing. The mixture-inducing valve also may interact with the flow barrier to enhance the fluid mixing and fluid breakup. One embodiment of the present spray coating device has an internal fluid breakup section, such as an impinging jet section, adjacent the mixture-inducing valve. The resulting spray coating has refined characteristics, such as reduced mottling.
Abstract:
A novel process for atomizing a liquid stream is disclosed and includes introducing the liquid to a nozzle including a fluid conduit, an outlet orifice and swirl-imparting means thereby at least partially atomizing the liquid stream to form an atomized liquid stream. Preferably, the atomized liquid stream does not contact a fluid deflecting device upon exit from the outlet orifice. This novel process can be utilized in a fluidized catalytic cracking process prior to contact with a fluidized catalyst or in a coking process for atomizing an oil stream.
Abstract:
An orifice plate is vibrated up and down at high frequency while liquid is delivered to its lower surface so that the liquid is ejected up from the plate in the form of very small diameter droplets. The upper surface of the plate is constructed to resist wetting and buildup of a liquid film thereby to form smaller diameter liquid droplets which are ejected to greater heights. The upper surface of the plate may be treated with a surfactant such as a flurosurfactant.
Abstract:
Fluids are atomized using a miniaturized electrostatic microinjector. The microinjectors are capable of producing uniform droplets in several spray modes, and metering and dispersing very small volume fluids. The atomizer is useful in carburetion systems for internal combustion engines, to prepare samples for analytical methods such as MALDI, for fluid filtration and separation, and in other applications.
Abstract:
An interference fit assembly comprises a wick constructed of a porous polymer and a wall constructed of a polymer for interference engagement with the wick. The wick has a weight of 3.3 grams.
Abstract:
A retort is described for use with paperboard containers (48) to reduce moisture absorption during processing of foodstuffs therein. The improvement includes using solid cone spray nozzles (50) with spray angles in the range of about 100 degrees to about 115 degrees. In one embodiment, the distance (Dnull) between the nozzles and the container is in the range of about 70 mm to about 200 mm. In another embodiment, the flow rate if each nozzle (50) is reduced relative to known systems, while the total vessel flow rate is kept the same as per cubic meter load. Further, an overpressure may be added to the vessel via compressed air. In accordance with other aspects, an Impact reduction is used which relates nozzle flow rate, pressure, distance, etc. with moisture absorption in paperboard containers.