Abstract:
A method of making a foam-filled tire wherein a resilient elastomeric foam is formed and cured within a tire carcass while the carcass interior is at super-atmospheric pressure. Such superatmospheric pressure is believed to support the cell walls against internally generated gas (blowing) pressures, thereby stabilizing the cells at higher than usual internal cell pressure. The foaming operation is carried out so that the foam only partially fills the carcass interior. After the elastomeric foam has been cured the tire carcass interior is depressurized down to the pressure to be used in service. During the depressurization process the internal cell pressures cause the cells to expand and further fill the tire interior space. The depressurization processis carried out after the elastomeric foam has been cured, i.e. when the cell walls have attained their full potential strength. Accordingly, the post-cure expansion of the cell walls does not result in cell wall rupture, even though the cell walls are relatively thin. The thin cell walls resulting from this process are advantageous in that they reduce the required mass of foam-forming elastomer, thereby achieving improvements in respect to lower raw material costs, shorter cure times, lesser non-useful dead loads, lesser heat build-up and foam degradation during service, and lesser tendency toward wheel imbalance.
Abstract:
A flat free pneumatic tire comprising a casing and a void free elastomeric filling material, which filling material is a polyurethane of (a) prepolymer of organic polyisocyanate and defined polyether or defined polyester and (b) a defined polyether or defined polyester, in the absence of foam producing material in the reaction zone. The elastomeric filling material itself. A two container article (system) adapted for producing said void free filling material where one container has said prepolymer reactant and the other container has the polyether or polyester reactant, as required.
Abstract:
FLEXIBLE RUBBER ARTICLES REINFORCED WITH HIGH TEMPERATURE ORGANIC FIBERS HAVING DENSITIES GREATER THAN 1.37 G./ ML. AND UNUSUALLY HIGH INITIAL MODULI OF OVER 700 GRAMS PER DENIER AT ELONGATIONS OF 2% OR GREATER ARE DISCLOSED. THE REINFORCING FIBER ELEMENTS ARE MADE FROM WHOLLY AROMATIC POLYMERS HAVING MELTING POINTS ABOVE 200*C. AND INHERENT VISCOSITIES OF AT LEAST 3.5 THE POLYMERS ARE FURTHER CHARACTERIZED IN THAT THE RECURRING DIVALENT AROMATIC RADICALS ALONG THE POLYMER CHAIN ARE AT LEAST ABOUT 85 WEIGHT PERCENT PARA-ORIENTED, HAVE A PLANE OF SYMMETRY OR ARE LINKED BY RING ATOMS REPRESENTING THE MAXIMUM SPACING. THE FIBERS ARE PARTICULARLY USEFUL AS REINFORCING ELEMENTS IN V-BELTS, CONVEYOR BELTS AND PNEUMATIC RUBBER TIRES, AND ESPECIALLY IN THE BELT PLIES OF BELTED TIRES.
Abstract:
Disclosed herein are kits for use in adding degradable foam to a tire, methods for preparing a degradable foam-containing tire, tires containing degradable foam, and methods for degrading the degradable foam in tires containing degradable foam. The degradable foam comprises a combination of (i) at least one di- or polyisocyanate, (ii) at least one polysiloxane diol, at least one polysiloxane diamine, or a combination thereof, and (iii) optionally at least one polyol.
Abstract:
Disclosed herein are kits for use in adding degradable foam to a tire, methods for preparing a degradable foam-containing tire, tires containing degradable foam, and methods for degrading the degradable foam in tires containing degradable foam. The degradable foam comprises a combination of (i) at least one di- or polyisocyanate, (ii) at least one polysiloxane diol, at least one polysiloxane diamine, or a combination thereof, and (iii) optionally at least one polyol.
Abstract:
Particular embodiments of the invention comprises a composition for reducing weight imbalances, force variations, and/or vibrations in a tire-wheel assembly, the composition comprising a first plurality of particulate for positioning within the tire-wheel assembly, where each particle in the first plurality of particulate is characterized as having low energy absorption capabilities, and a second plurality of particulate for positioning within the tire-wheel assembly, where each particle in the second plurality of particulate is characterized as having elevated energy absorption capabilities. Additional embodiments of the invention comprise a method for reducing force imbalances, force variations, and/or vibrations in a tire-wheel assembly, which includes the steps of providing a tire-wheel assembly and placing into a pressurization chamber of said tire-wheel assembly a composition as contemplated in any embodiment or combination of embodiments suggested herein.
Abstract:
An auger for a grinder material for a tire filling machine, having: a cylindrical column; and a plurality of flights extending outwardly from the cylindrical core, wherein (i) the flights are arranged in pairs extending radially outwards from the cylindrical column at 180 degrees to one another, and (ii) each flight has a sharpened leading edge. Each pair of flights are positioned at angles of approximately 50 or 60 degrees to one another, and each flight extends approximately half way around the circumference of the cylindrical column, and there are no outer edge notches in the flights.
Abstract:
Granules containing mixtures of silica powder and cross-linked rubber powder are used in the manufacture of battery separators or vehicle tires. A granule contains silica and rubber powders in proportional amounts that form a silica powder carrier within which rubber powder particles are distributed. Incorporating silica-rubber granules in the manufacturing process of polyethylene separators offers a way to limit water loss in and improve the cycle life of a deep cycle lead-acid battery. Incorporating silica-rubber granules in the manufacturing process of vehicle tires affords advantages including easier material handling, reduced production of dust, and reduction in the number of ingredients measured and added to the formulation.