Abstract:
The invention relates to a vehicle wheel assembly, comprising 1) a wheel rim (4) having two opposed circular rim flanges (5); 2) an outer tire (3) having two beads secured at the circular rim flanges (5); 3) a non-pneumatic inner tire (1) comprising expanded thermoplastic polyurethane (E-TPU), which inner tire (1) is enclosed by the outer tire (3) and the wheel rim (4); wherein the inner tire (1) in the assembly is in a compressed state S1, which state is compressed as compared to a relaxed state S2 when the inner tire (1) is not enclosed by the outer tire (3), the compression being such that the cross-sectional surface area SA of the inner tire (1), which area is perpendicular to the plane of the tire, is smaller in state S1 than in state S2.
Abstract:
The tire with an inner core includes a resilient annular shell similar to a conventional vehicle tire, and an annular inner core disposed therein, allowing the vehicle to continue traveling if the annular shell is damaged. The resilient annular shell includes a central portion and a pair of sidewalls extending therefrom. The annular inner core is disposed within the resilient annular shell and includes an inner annular edge, a pair of side annular edges, and an outer annular edge. In one embodiment, the outer annular edge of the annular inner core contacts the interior surface of the central portion of the resilient annular shell, and the pair of side annular edges are spaced apart from the interior surfaces of the pair of sidewalls of the resilient annular shell for receiving pressurized air therebetween. Preferably, the annular inner core is formed from a wire-reinforced resilient material, such as rubber.
Abstract:
A solid vacuum wheel and tire assembly incorporating a vacuum to adhere a solid tire in place against a wheel rim, allowing for safe and reliable operation. The assembly incorporates a flexible solid tire core which contracts into place after a vacuum is applied, contracting and adhering directly onto the wheel rim and filling a void between the rim and tire, having no air pressure to go flat or release if punctured. Vacuum channels installed along the wheel rim direct a vacuum seal to the tire core. A vacuum valve is installed into a vacuum chamber, which acts as a conduit to direct the vacuum throughout the assembly. The solid tire incorporates a possible concave shaped tire tread configuration, tire tread rubber and a steel belt. The solid tire core material comprising of solid or porous rubber, jell or a combination of each provides a solid flexible non-pneumatic core structure.
Abstract:
A tire assembly includes a tire and an annular tube, wherein the tire further comprises securing edges and a mounting cavity, the annular tube is installed inside the mounting cavity. The annular tube having a profile of a circular form with a volute structure, so that the annular tube will not be punctured and result in a flat tire. Moreover, the manufacturing process of the tires for the present invention is very simple, so that the manufacturing costs can be reduced significantly. Meanwhile, the present invention is able to be used in an ordinary tire, to achieve the functions of safety use, convenience in operation and low manufacturing costs.
Abstract:
It is to solve problems in a safety tire in which hollow particles also referred to as the foamable compositions are filled in the hollow ring-shaped partition wall and to provide a safety tire having a partition wall structure capable of sufficiently developing the function of the hollow particles.In a safety tire comprising a tire/approved rim assembly constructed by assembling the tire onto the approved rim, a hollow ring-shaped partition wall disposed inside the assembly to define a chamber extending in a circumferential direction along the rim, and thermally expandable hollow particles filled in the chamber and each consisting of a continuous phase of a resin and a closed cell(s), wherein the partition wall is provided with a filter selectively passing only a gas emitted when the hollow particles are thermally expanded.
Abstract:
An underground mine tire 20 having a nominal bead diameter of 20.0 inches or less has a carcass, a tread 25 and a pair of rubber sidewalls 23, each extending along the outer periphery of the carcass 21 below the tread 25. The tire 20 has a nominal bead width D greater than 8.50 inches and an overall diameter of less than 55 inches. The carcass 21 has at least one radial steel cord reinforced ply 24.
Abstract:
The present invention concerns a runflat device for a tubeless mounted assembly for a motor vehicle and an assembly incorporating said device. A device in accordance with the invention for a unit comprises a wheel rim having a plurality of pieces and a tire cover comprising beads mounted against the flanges of the rim, the device comprising: a support ring for mounting around the rim to support the tire cover following a drop in inflation pressure and divided into at least two ring sectors; and means for locking said beads against the flanges to connect the sectors to the beads. The device is such that each ring sector comprises a rigid wall which defines at least one internal volume and which defines the lateral faces of the ring sector.
Abstract:
A support ring for vehicle tires is disclosed. The support ring is to be mounted on a tire wheel for support of the underside of the tire when the tire is operated at underinflated conditions. The support ring has a base, a cap, and a series of supporting arches extending between the base and the cap. The highest point of the arch contacts the support ring cap. During load, the arch flexes and transmits the load force along the arch sides and to the base of the support ring.
Abstract:
The preferred embodiment is directed to a pneumatic tire having a plurality of layers of high density foam rubber formed therein and methods of manufacturing and installing the layers therein. The preferred method of forming the layers of fill to be inserted in the pneumatic tire casing includes the following steps. Forming an elongated strip of elastomeric material of a size sufficient to form at least two concentric layers in a predetermined size casing of a pneumatic tire at a manufacturing site. At least one dimension of the elongated strip is the same as at least one dimension of the two concentric layers when inserted in the casing. Formulating data sheet having information from which the elongated strips can be cut to form the at least two layers for at least one predetermined condition. Transporting the elongated strip of the elastomeric material and the data sheet to an installation site remote from the manufacturing site.
Abstract:
A tire assembly comprising outer and inner tires having at least one vent and one plug is described. The vents and plugs mate in the assembly providing an air tight seal in the bead seal region of the tires. The vents or plugs permit air to escape from the outer tire if an attempt is made to mount the outer tire on a rim without a mating inner tire.