Abstract:
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Abstract:
A method of reforming a glass sleeve and a shaping tool is disclosed. The method for reforming a glass sleeve may be carried out by providing a tube made of glass. The tube may have a longitudinal axis and an inner curved surface enclosing a space. The tube may be heated to a temperature within the soften range of the glass. A shaping tool may be introduced. The shaping tool may have at least two opposing fingers into the enclosed space. The at least two opposing fingers may extend generally radially. The at least two opposing fingers may be moved against the inner curved surface along a radial axis to reform the tube to form the first portion.
Abstract:
A method and apparatus are provided for producing a tube of glass by zonewise heating and softening of a hollow cylinder by a movable heating zone while rotating about its rotation axis. The glass tube is continuously formed by radial expansion of the softened region under action of centrifugal force and/or internal overpressure applied in the hollow-cylinder bore. The method and apparatus make it possible to deform the hollow cylinder in a single or a small number of forming steps into a glass tube having a larger outer diameter and high dimensional accuracy by determining a circumferential position at which the wall thickness is comparatively small, and during heating and softening of the rotating hollow cylinder a coolant is dispensed from a coolant source onto the deformation zone only when or predominantly when the circumferential position having the comparatively small wall thickness passes the coolant source.
Abstract:
An apparatus for making a profiled tubing includes a mandrel adapted for positioning proximate a tubing. The mandrel has a nozzle section with a select cross-sectional profile that will define a final cross-sectional profile of the tubing. The nozzle section has a feed chamber for receiving a gas and a porous circumferential surface through which the gas can be discharged to an exterior of the mandrel. The gas when discharged to the exterior of the mandrel forms a film of pressurized gas between the porous circumferential surface and the tubing. A method of forming a profiled tubing using the apparatus is disclosed. A sleeve formed from the profiled tubing is also disclosed.
Abstract:
One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.
Abstract:
A method for producing a glass sleeve having a first flattened portion and shaping tools for forming such glass sleeves. A method can comprise providing a substantially cylindrical glass tube—optionally polished or otherwise treated to reduce or remove interior imperfections—heating the glass tube to a temperature within the softening range of the glass, introducing one or more shaping tools having a generally D-shaped or generally rectangular cross-section into the enclosed space, and moving the one or more shaping tools against the inner curved surface to deform the tube, forming the first flattened portion. The one or more shaping tools can be made of any suitable material, for example: steel coated with boron nitride; porous graphite or carbon air bearings; or a nickel-based alloy (e.g., Inconel).
Abstract:
A glass molding tool is provided that includes a forming mandrel, a method for forming glass, and to an apparatus for hot forming of glass. The glass products obtained in this way may be used as pharmaceutical packaging. The forming mandrel reshapes at least a portion of a heated region of a glass precursor. The mandrel includes a heat-resistant core material and a diffusion layer that is in contact with the glass precursor during reshaping.
Abstract:
a method and to an apparatus for producing optical glass elements, in particular for producing what is referred to as low-cost optics for focusing light onto small areas, for example, for photovoltaic applications or optical couplers. The method for producing the optical glass elements includes: providing a glass rod having a selected cross-section, heating the glass rod such that it can be deformed in at least some sections, molding at least one optical glass element from the deformable section using a molding tool, separating the optical glass element from the glass rod at the connection, arranging a plurality of separated optical glass elements to form a group, and grinding and/or polishing at least one section of the separating surfaces of the grouped optical glass elements. The invention makes it possible to produce optical glass elements that meet low quality requirements in high quantities and with high output at low cost.
Abstract:
Stress exerted on an inner or outer circumferential side of a glass tube 6 is controlled when a glass material 3 is heated and softened by a heating element 41 provided around the glass material 3 and a piercing plug 31 is relatively pressed into a softened region of the glass material 3 to thereby form the glass material 3 into the glass tube 6 gradually. For example, the control of the stress can be carried out by controlling an internal or external pressure of the glass tube 6. As a result, the deformation of the glass tube 6 just after piercing is prevented so that the glass tube 6 can be obtained with high quality. It is also possible to solve the problem that cracks may occur easily at the time of reheating because of residual stress distribution after cooling.
Abstract:
To provide a method and apparatus for parting a glass rod without causing a crack or rupture at a grasped root portion of the glass rod in parting the glass rod for producing a glass preform.The apparatus for parting the glass rod in a predetermined length by grasping both ends of the glass rod 11 is characterized by comprising a supporting unit 18 of Y-character shape for supporting an intermediate position between both ends of the glass rod 11 from the lower part, the supporting unit 18 having a carbon sleeve composed of a cylindrical body that is rotatable around each of two leg portions making up a forked leg portion as an axis, the carbon sleeve being rotatable along with an axial movement of the glass rod.