Locally confined deep pocket process for ULSI MOSFETS
    191.
    发明授权
    Locally confined deep pocket process for ULSI MOSFETS 有权
    用于ULSI MOSFET的局部封闭深口袋工艺

    公开(公告)号:US06492670B1

    公开(公告)日:2002-12-10

    申请号:US09821258

    申请日:2001-03-29

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L29/66492 H01L29/665

    Abstract: A method of fabricating an integrated circuit with locally confined deep pocket regions utilizes a dummy or sacrificial gate spacer. Dopants are provided through the openings associated with sacrificial spacers to form the pocket regions. The dopants are provided after silicidation. The openings can be filled with spacers. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).

    Abstract translation: 制造具有局部密封深口袋区域的集成电路的方法利用虚拟或牺牲栅极间隔物。 通过与牺牲间隔物相关联的开口提供掺杂剂以形成袋区域。 在硅化后提供掺杂剂。 开口可以填充间隔件。 该过程可用于P沟道或N沟道金属氧化物半导体效应晶体管(MOSFET)。

    Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
    192.
    发明授权
    Method of forming a double gate transistor having an epitaxial silicon/germanium channel region 有权
    形成具有外延硅/锗沟道区的双栅晶体管的方法

    公开(公告)号:US06475869B1

    公开(公告)日:2002-11-05

    申请号:US09793055

    申请日:2001-02-26

    Applicant: Bin Yu

    Inventor: Bin Yu

    Abstract: A method of manufacturing an integrated circuit with a channel region containing germanium. The method can provide a double planar gate structure. The gate structure can be provided over lateral sidewalls of channel region. The semiconductor material containing germanium can increase the charge mobility associated with the transistor. An epitaxy process can form the channel region. A silicon-on-insulator can be used.

    Abstract translation: 一种制造具有含有锗的沟道区的集成电路的方法。 该方法可以提供双平面栅极结构。 栅极结构可以设置在沟道区域的侧壁上。 含锗的半导体材料可以增加与晶体管相关的电荷迁移率。 外延工艺可以形成通道区域。 可以使用绝缘体上硅。

    CMOS transistor with amorphous silicon elevated source-drain structure and method of fabrication
    193.
    发明授权
    CMOS transistor with amorphous silicon elevated source-drain structure and method of fabrication 有权
    具有非晶硅的CMOS晶体管提高了源极 - 漏极结构和制造方法

    公开(公告)号:US06465312B1

    公开(公告)日:2002-10-15

    申请号:US09845602

    申请日:2001-04-27

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L29/6653 H01L29/41775 H01L29/41783 H01L29/665

    Abstract: A method of fabricating CMOS transistors having an elevated source-drain structure. The method utilizes the formation of L-shaped spacers on the gate stack followed by amorphous silicon (a-Si) deposition. By way of example, the L-shaped spacers are formed by depositing a first and second spacer layer over the gate stack. The second spacer layer is etched to create a dummy spacer adjacent the gate stack. The regions of the first spacer which are unprotected by the dummy spacer are etched away. The dummy spacer is removed wherein L-shaped spacers of the first spacer layer remain adjacent the gate stack. Deep source-drain implantation is performed on the deposited layer of silicon. After implantation, silicide may be formed on the amorphous silicon at a gate-to-contact spacing determined by the thickness of the L-shaped spacer.

    Abstract translation: 一种制造具有升高的源极 - 漏极结构的CMOS晶体管的方法。 该方法利用在栅极堆叠上形成L形间隔物,随后是非晶硅(a-Si)沉积。 作为示例,通过在栅极堆叠上沉积第一和第二间隔层来形成L形间隔物。 蚀刻第二间隔层以产生邻近栅叠层的虚拟间隔物。 被虚拟间隔物保护的第一间隔物的区域被蚀刻掉。 去除虚拟间隔物,其中第一间隔层的L形间隔物保持邻近栅极堆叠。 在硅的沉积层上进行深源极 - 漏极注入。 在注入之后,硅化物可以以由L形间隔物的厚度确定的栅极 - 接触间距在非晶硅上形成。

    Method of fabricating a silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness
    194.
    发明授权
    Method of fabricating a silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness 有权
    制造具有不均匀厚度的有源层的绝缘体上硅(SOI)芯片的方法

    公开(公告)号:US06448114B1

    公开(公告)日:2002-09-10

    申请号:US10128831

    申请日:2002-04-23

    CPC classification number: H01L27/1203 H01L21/84

    Abstract: A method of fabricating a silicon-on-insulator (SOI) chip having an active layer with a non-uniform thickness. The method includes the steps of providing a substrate; providing a buried oxide layer (BOX) on the substrate; providing an active layer on the BOX layer, the active layer having an initially uniform thickness; dividing the active layer into at least a first and a second tile; and altering the thickness of the active layer in the area of the second tile. The method also includes forming a plurality of partially depleted semiconductor devices from the active layer in the area of a thicker of the first and the second tiles and forming a plurality of fully depleted semiconductor devices from the active layer in the area of a thinner of the first and the second tiles.

    Abstract translation: 一种制造具有不均匀厚度的有源层的绝缘体上硅(SOI)芯片的方法。 该方法包括提供基板的步骤; 在衬底上提供掩埋氧化物层(BOX); 在BOX层上提供有源层,活性层具有最初均匀的厚度; 将活性层分成至少第一和第二瓦片; 并且改变第二瓦片区域中活性层的厚度。 该方法还包括在第一和第二瓦片较厚的区域中从有源层形成多个部分耗尽的半导体器件,并且在较薄的区域中从有源层形成多个完全耗尽的半导体器件 第一和第二个瓷砖。

    Fabrication of test field effect transistor structure
    195.
    发明授权
    Fabrication of test field effect transistor structure 失效
    测试场效应晶体管结构的制作

    公开(公告)号:US06436773B1

    公开(公告)日:2002-08-20

    申请号:US09846842

    申请日:2001-05-01

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L29/4238 H01L29/41758 H01L29/6659

    Abstract: For fabricating a test field effect transistor on a semiconductor substrate, a layer of gate dielectric material is deposited on the semiconductor substrate, and a layer of gate electrode material is deposited on the layer of gate dielectric material. A dummy structure is formed on the gate electrode material, and the dummy structure is disposed over a shaped area of the gate electrode material and of the semiconductor substrate. The dummy structure has at least one sidewall around a perimeter of the shaped area. A spacer structure is formed to surround the at least one sidewall of the dummy structure outside of the perimeter of the shaped area. The dummy structure is etched away such that the shaped area of the gate electrode material is exposed and such that the spacer structure remains outside of the perimeter of the shaped area. Any exposed regions of the gate electrode material and of the gate dielectric material not under the spacer structure are etched away. The gate dielectric material remaining under the spacer structure forms a gate dielectric of the test field effect transistor, and the gate electrode material remaining under the spacer structure forms a gate electrode of the test field effect transistor. A drain and source dopant is implanted into exposed regions of the semiconductor substrate to form a first drain or source junction within the shaped area surrounded by the gate dielectric and the gate electrode, and to form a second drain or source junction outside the shaped area beyond the gate dielectric and the gate electrode. A width of the test field effect transistor is the perimeter of the shaped area, and a length of the test field effect transistor is the width of the gate dielectric and the gate electrode extending out from the perimeter of the shaped area.

    Abstract translation: 为了在半导体衬底上制造测试场效应晶体管,在半导体衬底上沉积一层栅极电介质材料,并且在该栅极电介质材料层上沉积一层栅电极材料。 在栅电极材料上形成虚拟结构,并且将虚设结构设置在栅电极材料和半导体衬底的成形区域上。 虚拟结构具有围绕成形区域的周边的至少一个侧壁。 形成间隔结构以围绕该成形区域周边外部的该虚拟结构的至少一个侧壁。 蚀刻掉虚拟结构,使得栅电极材料的成形区域被暴露,并且使得间隔结构保持在成形区域的周边的外侧。 栅极电极材料的任何暴露区域和不在间隔结构下方的栅极电介质材料被蚀刻掉。 保留在间隔结构之下的栅极电介质材料形成测试场效应晶体管的栅极电介质,并且保留在间隔结构之下的栅电极材料形成测试场效应晶体管的栅电极。 将漏极和源极掺杂剂注入到半导体衬底的暴露区域中,以在由栅极电介质和栅极电极包围的成形区域内形成第一漏极或源极结,并且在成形区域外部形成超出第二漏极或源极结 栅极电介质和栅电极。 测试场效应晶体管的宽度是成形区域的周长,并且测试场效应晶体管的长度是从成形区域的周边延伸出的栅极电介质和栅电极的宽度。

    Multiple active layer structure and a method of making such a structure
    196.
    发明授权
    Multiple active layer structure and a method of making such a structure 有权
    多活性层结构和制造这种结构的方法

    公开(公告)号:US06429484B1

    公开(公告)日:2002-08-06

    申请号:US09633208

    申请日:2000-08-07

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L27/0688 H01L21/8221

    Abstract: An integrated circuit includes multiple active layers. Preferably, a semiconductor-on-insulator (SOI) or silicon-on-insulator wafer is utilized to house a first active layer. A second active layer is provided above an insulative layer above the SOI substrate. Solid phase epitaxy can be used to form the second active layer. Subsequent active layers can be added by a similar technique. A seeding window can also be utilized.

    Abstract translation: 集成电路包括多个有源层。 优选地,使用绝缘体上半导体(SOI)或绝缘体上硅晶片来容纳第一有源层。 第二有源层设置在SOI衬底上方的绝缘层的上方。 固相外延可用于形成第二活性层。 后续活动层可以通过类似的技术添加。 也可以使用播种窗。

    Silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness
    197.
    发明授权
    Silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness 有权
    具有不均匀厚度的有源层的绝缘体上硅(SOI)芯片

    公开(公告)号:US06414355B1

    公开(公告)日:2002-07-02

    申请号:US09770708

    申请日:2001-01-26

    CPC classification number: H01L27/1203 H01L21/84

    Abstract: A silicon-on-insulator (SOI) chip. The SOI chip has a substrate; a buried oxide (BOX) layer disposed on the substrate; and an active layer disposed on the BOX layer, the active layer divided into a first and a second tile, the first tile having a first thickness and the second tile having a second thickness, the second thickness being smaller than the first thickness. Also disclosed is a method of fabricating a silicon-on-insulator (SOI) chip having an active layer with a non-uniform thickness. The method includes the steps of providing a substrate; providing a buried oxide layer (BOX) on the substrate; providing an active layer on the BOX layer, the active layer having an initially uniform thickness; dividing the active layer into at least a first and a second tile; and altering the thickness of the active layer in the area of the second tile.

    Abstract translation: 绝缘体上硅(SOI)芯片。 SOI芯片具有基板; 设置在基板上的掩埋氧化物(BOX)层; 以及设置在所述BOX层上的有源层,所述有源层被分为第一和第二瓦片,所述第一瓦片具有第一厚度,所述第二瓦片具有第二厚度,所述第二厚度小于所述第一厚度。 还公开了一种制造具有不均匀厚度的有源层的绝缘体上硅(SOI)芯片的方法。 该方法包括提供基板的步骤; 在衬底上提供掩埋氧化物层(BOX); 在BOX层上提供有源层,活性层具有最初均匀的厚度; 将活性层分成至少第一和第二瓦片; 并且改变第二瓦片区域中活性层的厚度。

    Fabrication of fully depleted field effect transistor with raised source and drain in SOI technology
    198.
    发明授权
    Fabrication of fully depleted field effect transistor with raised source and drain in SOI technology 有权
    在SOI技术中制造具有升高的源极和漏极的完全耗尽的场效应晶体管

    公开(公告)号:US06406951B1

    公开(公告)日:2002-06-18

    申请号:US09781364

    申请日:2001-02-12

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L29/66772 H01L29/41733 H01L29/78618

    Abstract: For fabricating a field effect transistor on a semiconductor substrate in SOI (semiconductor on insulator) technology, an insulating block comprised of insulating material is formed on a thin semiconductor island comprised of semiconductor material. Semiconductor material is further grown from sidewalls of the semiconductor island to extend up along sidewalls of the insulating block to form a raised drain structure on a first side of the insulating block and the semiconductor island and to form a raised source structure on a second side of the insulating block and the semiconductor island. A drain and source dopant is implanted into the raised drain and source structures. A thermal anneal is performed to activate the drain and source dopant within the raised drain and source structures and such that the drain and source dopant extends partially into the semiconductor island. The insulating block is etched away to form a block opening, and a gate dielectric is deposited at a bottom wall of the block opening. The block opening is filled with a conductive material to form a gate structure disposed over the semiconductor island. The portion of the semiconductor island disposed under the gate structure forms a channel region that is fully depleted during operation of the field effect transistor. A drain silicide is formed within the raised drain structure, and a source silicide is formed within the raised source structure. In this manner, the drain and source silicides formed in the raised drain and source structures may be formed to have a higher thickness than the relatively thin semiconductor island to minimize series resistance at the drain and source of the field effect transistor.

    Abstract translation: 为了在SOI(绝缘体上半导体)技术的半导体衬底上制造场效应晶体管,在由半导体材料构成的薄半导体岛上形成由绝缘材料组成的绝缘块。 半导体材料进一步从半导体岛的侧壁生长,沿着绝缘块的侧壁向上延伸,以在绝缘块和半导体岛的第一侧上形成升高的漏极结构,并在第二侧上形成升高的源极结构 绝缘块和半导体岛。 漏极和源极掺杂剂被注入到升高的漏极和源极结构中。 执行热退火以激活凸起的漏极和源极结构内的漏极和源极掺杂剂,并且使得漏极和源极掺杂物部分地延伸到半导体岛中。 蚀刻绝缘块以形成块开口,并且栅极电介质沉积在块开口的底壁处。 块开口填充有导电材料以形成设置在半导体岛上的栅极结构。 设置在栅极结构下面的半导体岛的部分形成在场效应晶体管的工作期间完全耗尽的沟道区。 在升高的漏极结构内形成漏极硅化物,并且在升高的源极结构内形成源极硅化物。 以这种方式,在升高的漏极和源极结构中形成的漏极和源极硅化物可以形成为具有比相对薄的半导体岛更高的厚度,以最小化场效应晶体管的漏极和源极处的串联电阻。

    Source/drain doping technique for ultra-thin-body SOI MOS transistors
    199.
    发明授权
    Source/drain doping technique for ultra-thin-body SOI MOS transistors 有权
    超薄体SOI MOS晶体管的源极/漏极掺杂技术

    公开(公告)号:US06403433B1

    公开(公告)日:2002-06-11

    申请号:US09397217

    申请日:1999-09-16

    CPC classification number: H01L29/66772 H01L29/78618

    Abstract: An ultra-large-scale integrated (ULSI) circuit includes MOSFETs on an SOI substrate. The MOSFETs include elevated source and drain regions. The elevated source and drain regions are amorphized before doping. Neutral ion species can be utilized to amorphize the elevated source and drain region. Dopants are activated in a low-temperature rapid thermal anneal process.

    Abstract translation: 超大规模集成(ULSI)电路包括SOI衬底上的MOSFET。 MOSFET包括升高的源极和漏极区域。 在掺杂之前,升高的源极和漏极区非晶化。 中性离子物质可用于使提升的源极和漏极区域非晶化。 掺杂剂在低温快速热退火工艺中被激活。

    Fabrication of self-aligned front gate and back gate of a field effect transistor in semiconductor on insulator
    200.
    发明授权
    Fabrication of self-aligned front gate and back gate of a field effect transistor in semiconductor on insulator 有权
    半导体绝缘体上的场效应晶体管的自对准前栅极和后栅极的制造

    公开(公告)号:US06383904B1

    公开(公告)日:2002-05-07

    申请号:US09690081

    申请日:2000-10-16

    Applicant: Bin Yu

    Inventor: Bin Yu

    CPC classification number: H01L29/6675 H01L29/4908 H01L29/78639 H01L29/78648

    Abstract: For fabricating a field effect transistor on a semiconductor substrate in SOI (semiconductor on insulator) technology, a first layer of dielectric material is formed on the semiconductor substrate, and a layer of amorphous semiconductor material is deposited on the first layer of dielectric material. A second layer of dielectric material is deposited on the layer of amorphous semiconductor material, and a front gate opening is etched through the second layer of dielectric material to expose the layer of amorphous semiconductor material through the front gate opening. An amorphization dopant is implanted into the semiconductor substrate through the front gate opening to form a back gate region of amorphous semiconductor material in the semiconductor substrate such that the back gate region is formed to be aligned under the front gate opening. In addition, a back gate dopant is implanted into the back gate region of amorphous semiconductor material through the front gate opening. A gate dielectric is formed at the bottom of the front gate opening to contact the layer of amorphous semiconductor material, and a remaining portion of the front gate opening is filled with a gate electrode material. In this manner, because the same front gate opening is used for forming both the front gate electrode and the back gate region, the front gate electrode and the back gate region are substantially aligned with each other to ensure that the back gate region overlaps the front gate electrode. Thus, the area of the back gate region is minimized to be substantially aligned to the area of the channel region under the gate dielectric. A minimized area of the back gate region in turn minimizes the parasitic capacitance from the back gate region to enhance the speed performance of the MOSFET.

    Abstract translation: 为了在SOI(绝缘体上半导体)技术的半导体衬底上制造场效应晶体管,在半导体衬底上形成第一层电介质材料,并且在第一绝缘材料层上沉积非晶半导体材料层。 第二层电介质材料沉积在非晶半导体材料层上,并且通过第二介电材料层蚀刻前栅极开口以通过前栅极开口暴露非晶半导体材料层。 非晶化掺杂剂通过前栅极开口注入到半导体衬底中,以在半导体衬底中形成非晶半导体材料的背栅极区域,使得背栅区域形成为在前栅极开口下对准。 此外,背栅掺杂剂通过前栅极开口注入到非晶半导体材料的背栅区域中。 栅极电介质形成在前栅极开口的底部以与非晶半导体材料层接触,并且前栅极开口的剩余部分填充有栅电极材料。 以这种方式,由于使用相同的前栅极开口来形成前栅极电极和后栅极区域,所以前栅电极和后栅极区域基本上彼此对准,以确保后栅极区域与前栅极区域重叠 栅电极。 因此,背栅极区域的面积被最小化以与栅极电介质下方的沟道区域的区域基本对齐。 背栅极区域的最小化面积进而将来自背栅极区域的寄生电容最小化,以增强MOSFET的速度性能。

Patent Agency Ranking