Abstract:
Provided is a motor having a magnetic polar unit in which a permanent magnetic polar array having arranged therein alternately a plurality of permanent magnetic polar elements in alternate opposite poles is made to face a plurality of electromagnetic coil arrays alternately excited at opposite poles, and the permanent magnetic polar array is made to move thereby; wherein the motor further comprises a sensor for detecting the periodical magnetic change accompanying the movement of the permanent magnetic polar array, the output of the sensor is directly returned as a direct drive waveform to the electromagnetic coils, and this drive circuit forms the excitation signal based on the return signal.
Abstract:
Provided is a motor having a magnetic polar unit in which a permanent magnetic polar array having arranged therein alternately a plurality of permanent magnetic polar elements in alternate opposite poles is made to face a plurality of electromagnetic coil arrays alternately excited at opposite poles, and the permanent magnetic polar array is made to move thereby; wherein the motor further comprises a sensor for detecting the periodical magnetic change accompanying the movement of the permanent magnetic polar array, the output of the sensor is directly returned as a direct drive waveform to the electromagnetic coils, and this drive circuit forms the excitation signal based on the return signal.
Abstract:
An actuator mechanism having a different magnet polarity arrangement than the conventional mechanisms is provided. The actuator mechanism 100 has a magnet unit 210 that includes magnets 30 and an electromagnetic coil unit 110 that includes an electromagnetic coil. the relative positions of the magnet unit 210 and the magnetic coil unit 110 can change. The magnet unit 210 includes a yoke member 20 and two or more magnets 30. The two magnets 30 are pulled toward the yoke member 20 in the state where identical poles face each other across the yoke member 20.
Abstract:
A fan unit comprises an electric rotary machine (e.g. electric motor) having a rotor and a fin structure unified with the rotor. The fan unit further comprises a rotation mechanism for rotating the rotor. The rotor is formed to have an opening at a central portion thereof in a direction along which the opening permits fluid to flow. The fin structure is coupled with a peripheral portion of the opening so as to be unified with the rotor. The peripheral portion incorporates the rotation mechanism therein.
Abstract:
A PWM control system, comprising PWM fundamental wave generation means for forming a PWM fundamental wave by dividing a fundamental frequency signal; PWM cycle setting means for setting a PWM cycle on the basis of the PWM fundamental wave; duty ratio formation means for forming a duty ratio (N/M:N≦M, where M is the maximum number of clocks) in the PWM cycle; and PWM control signal output means for outputting a PWM control signal with the duty ratio to a load drive circuit.
Abstract:
Aspects of the invention can provide data processor for generating driving image data for operating an image display device, including an image memory, a write-in control section for sequentially writing-in plural frame image data having a predetermined frame rate to the image memory, a read-out control section for reading-out the frame image data 1 times (1 is an integer of 2 or more) at a rate 1 times the frame rate with every frame image data written into the image memory, and a driving image data generating section for generating the driving image data corresponding to each read-out image data sequentially read out of the image memory. In the read-out image data corresponding to a certain first frame and the read-out image data corresponding to a second frame continued to the first frame, the driving image data generating section can set image data provided by replacing at least one portion of each read-out image data with mask data to the driving image data with respect to first read-out image data of a 1-th period finally read out as the read-out image data corresponding to the first frame, and second read-out image data of the first period firstly read out as the read-out image data corresponding to the second frame. The driving image data generating section also can set read-out image data to the driving image data as they are with respect to the read-out image data read out in at least one period among the read-out image data except for the first read-out image data of the first frame. The driving image data generating section can also set the read-out image data to the driving image data as they are with respect to the read-out image data read out in at least one period among the read-out image data except for the second read-out image data of the second frame.
Abstract:
A discharge tube is driven by a multiple-phase drive circuit, and includes a discharge container having an internal discharge space and multiple electrodes that are secured to the discharge container and correspond to each phase of the multiple-phase drive circuit. The tips of the multiple electrodes protrude into the discharge space, and are oriented toward a predetermined single point of union. All of the electrodes located on one side of a virtual plane that includes the predetermined point of union. Furthermore, a discharge lamp having the discharge tube includes three electrodes, and electric discharge can take place between each pair of electrodes. When the discharge lamp is driven at maximum output, voltage is impressed to the three electrode terminals such that at least one of the voltages VeAB, VeBC, VeCA between the three electrode terminals will be in a discharge period.
Abstract:
The technique of the present invention carries out specific image processing that emphasizes articulation of display with a varying degree of emphasis for respective sites of an image projected by a projector. A typical example of such image processing is sharpness adjustment. The degree of emphasis in sharpness adjustment at each site is specified, based on an elevation angle of the projector and a focalized position of the projected image. The technique of the invention thus readily prevents deterioration of the image quality due to out-of-focus state of the projected image.
Abstract:
A brushless motor stator comprising a lamination body in which conductive layers 1 B and insulating layers 1 A are formed alternately. A plurality of sets of coils 12 of wound conductive patterns are formed on each conductive layer and the coils of the conductive layers adjoined via the insulating layers are connected to each other via through holes formed on the insulating layers.
Abstract:
A system clock generation module varies an oscillation frequency and outputs a frequency diffused clock as a system clock. A synchronizing signal measurement module measures a synchronizing signal characteristic value, which includes at least a synchronizing signal period and a synchronizing signal cycle corresponding to an input image signal, relative to a measurement clock generated from the system clock as a reference. An image signal analyzing module determines that specification of the input image signal is changed when the observed synchronizing signal characteristic value is out of a predetermined range, while determining that the specification of the input image signal is unchanged when the observed synchronizing signal characteristic value is in the predetermined range. The image signal analyzing module analyzes the input image signal according to a result of the determination. This arrangement of the present invention ensures stable analysis of the specification of the input image signal.