Abstract:
An improved method and apparatus for indirect evaporative cooling of a fluid stream to substantially its dew point temperature. Plate heat exchanger has perforations 11 and channels 3, 4 and 5 for gas or a low temperature for liquids on a dry side and wet side. Fluid streams 1 flow across the dry side 9, transferring heat to the plate. Gas stream 2 flows across the dry side and through perforations to channels 5 on wet side 10, which it then cools by evaporative cooling as well as conductive and radiative transfer of heat from plate. A wicking material provides wetting of wet side. In other embodiments, a desiccant wheel may be used to dehumidify the gas, air streams may be recirculated, feeder wicks 13 and a pump may be used to bring water from a water reservoir, and fans may be used to either force or induce a draft. The wicking material may be cellulose, organic fibers, organic based fibers, polyester, polypropylene, carbon-based fibers, silicon based fibers, fiberglass, or combinations of them. The device may be operated in winter months to scavenge heat from exhaust gases of a space and thus pre-heat fresh air, while simultaneously humidifying the fresh air.
Abstract:
An apparatus and system, as well as corresponding methods of operation and treatment of air, are provided which make use of a rotatable desiccant bed such as to permit the effective and selective alternative reduction of humidity of incoming air or energy recovery from air to be discarded.
Abstract:
A co-generation system and a dehumidification air-conditioner, which generates electricity and provides highly efficient air-conditioning by reducing the latent heat load of the air-conditioner. Exhaust gas from either a turbine or an internal combustion engine heats air for desorption of adsorbed moisture from a humidity rotor. The humidity rotor has a sound adsorption material to attenuate high frequency noise coming from the exhaust outlet of the co-generation system.
Abstract:
A method of impregnating paper with waterglass, such as soda waterglass or potassium silicate, the impregnated paper being usable as a dehumidifying element, wherein the method includes the steps of a) providing a sheet of paper such as facing paper and/or corrugated paper; b) immersing the paper into a highly concentrated waterglass solution at a temperature within the range of 45-95° C., with the highly concentrated waterglass solution having a viscosity of at least 350 mPa.s at a temperature of 45° C.; and c) cooling the immersed paper with air at a temperature no greater than 35° C. and preferably no greater than 25° C.
Abstract translation:浸渍纸可用作除湿元件的方法包括以下步骤:a)提供一张纸,例如面向纸和/或瓦楞纸; b )在45-95℃的温度下将纸浸入高度浓缩的水玻璃溶液中,高度浓缩的水玻璃溶液在45℃的温度下具有至少350mPa.s的粘度; 和c)在不高于35℃,优选不大于25℃的温度下用空气冷却浸没的纸。
Abstract:
A moisture control unit is made up of a housing and a moisture absorption rotor is rotatably supported in the housing. A fan is provided in an exterior wall of the housing and it feeds air into the housing. A heater is contained within the housing adjacent the rotor to evaporate moisture therefrom and a heat exchanger is also provided in the housing. The heat exchanger has a first passageway through which a portion of the air from the fan flows to absorb moisture from the rotor and a second passageway through which moisture-laden air flows from the rotor, the first and second passageways being in heat exchange relationship with each other.
Abstract:
A heat recovery, dehumidifier and cooling system for ventilating fresh air to a conditioned space. The system is comprised of an enthalpy wheel or body for treating incoming fresh air to remove heat and moisture therefrom and means such as a duct for introducing fresh air to a first segment of the enthalpy wheel or body. A heat exchanger is provided in communication with the enthalpy wheel or body to receive pre-conditioned air having heat and moisture removed therefrom, the heat exchanger further lowering the temperature of the pre-conditioned air. A refrigerated surface is provided in a first communication with the heat exchanger to receive pre-conditioned air exiting from the sensible heat exchanger, the refrigerated surface further treating the pre-conditioned air to provide refrigerated air leaving the refrigerated surface having both lowered temperature and humidity. The refrigerated surface is provided in second communication with the heat exchanger to permit the refrigerated air leaving the refrigerator surface to be in heat exchange relationship with the pre-conditioned air from the enthalpy wheel or body as the pre-conditioned air passes through the sensible heat exchanger, the pre-conditioned air warming the refrigerated air as the conditioned air passes through the sensible heat exchanger to provide conditioned air.
Abstract:
A method and device refrigerate a fluid by adding a volatile liquid mist to a flow of a gas to saturate the gas with vapor of the volatile liquid, to cause a large amount of misty minute liquid drops of the volatile liquid to float in the gas and to form a cooling gas. The cooling gas is directed through a first flow passage of a heat exchanger having first and second flow passages. The fluid to be refrigerated is directed through the second flow passage of the heat exchanger, so that heat from the fluid is transferred to the cooling gas, while the cooling gas passes through the first flow passage of the heat exchanger to elevate the temperature of the cooling gas. A portion of the minute liquid drops floating in the cooling gas are allowed to vaporize due to the elevated temperature of the cooling gas. The temperature of the cooling gas is continuously lowered by the heat of vaporization of the vaporizing minute liquid drops. The fluid passing through the heat exchanger is thus continuously refrigerated with the cooling gas having the continuously lowered temperature.
Abstract:
A moisture control unit is made up of a body which is partitioned by a partition wall into a plurality of chambers. A dehumidifying opening is provided in a chamber and a humidifying opening is provided in a chamber. A moisture absorption rotor is rotatably provided in the chambers and a heater provided in one of the chambers adjacent to the moisture absorption rotor for evaporating water which is absorbed by the moisture absorption rotor. A part of the moisture absorption rotor which absorbs moisture from air is made heavy to thereby rotate downward from the weight of water while a part of the moisture absorption rotor which is heated by a heater and from which water is evaporated is made light to thereby rotate upward. As a result, the moisture control rotor can rotate by itself without needing a rotary driving source. The moisture control unit has a simplified structure, can be easily miniaturized and installed at a low cost without needing piping.
Abstract:
A vapor exchange medium comprises a multiplicity of porous desiccant particles and a binder holding the particles together to form a solid shape. The binder includes a multiplicity of substantially spherical, covalently-bonded silica particles derived from a silica sol which are small enough to ensure sufficient covalent bonding of the silica particles to maintain the structural integrity of the vapor exchange medium, yet large enough relative to the pore size of the desiccant particles such that the silica particles do not materially adversely affect the adsorption properties of the desiccant particles. The vapor exchange medium may be impregnated into a fibrous carrier to form a heat exchange element or device. A method and apparatus for making a heat exchange device or element for air conditioning are also disclosed.
Abstract:
A vapor extraction apparatus includes a gel sorbent capable of absorbing vapor directly into the liquid state and capable of disgorging the absorbed liquid in a phase-transition. The apparatus includes a housing adapted for movement from a first position, where it is exposed to a vapor-containing gas stream and a first environmental condition, and capable of moving to a second position, where it is exposed to a second environmental condition. A gel sorbent is disposed on at least one surface of the housing. The gel sorbs vapor from the gas stream as liquid when the sorbent is in its first position. The sorbent disgorges the liquid during phase-transition collapse when it is in the second position. A method of extracting vapor from a process gas stream includes contacting a phase transition gel sorbent with vapor under conditions sufficient for the gel sorbent to undergo a phase transition and absorb vapor as liquid inside the gel sorbent. The gel sorbent is then exposed to conditions sufficient for it to undergo a phase transition and disgorge the liquid from inside the gel sorbent. The disgorged liquid is removed from the gel sorbent.