Abstract:
Timepiece movement 1 including an energy source 36 coupled to an oscillating weight 2 by a first kinematic chain 3 for automatically winding the movement 1, the timepiece movement 1 being characterized in that the energy source 36 is also coupled to an actuation device 41 and a vibrating element 42 via a second kinematic chain 4 to form a vibrating alarm mechanism that can be released at a predetermined time.
Abstract:
Capillary depth gauge (1) including at least one capillary tube (2) of triangular section arranged against a background (3) opposite an observation surface (5) and visible by transparency from the observation surface when the tubular section is substantially filled with water, at least one reflection surface (4), visible by reflection from said observation surface when the tubular section is substantially filled with air, said tube forming an isosceles triangle whose equal angles (α) have an angular value of between 48 and 60 degrees.
Abstract:
The receiver (1) is for receiving radio-synchronous signals for adjusting the time base of a timepiece. The receiver includes an antenna (2) for receiving radio-synchronous signals, a low noise amplifier (3), connected to the antenna, a frequency conversion unit (7) for converting the frequency of the filtered and amplified incoming signals from the amplifier, and a processing unit (8) receiving data signals (data_out) from the conversion unit for adjusting the time base. The conversion unit includes a local oscillator stage (10) with a quartz (12) for supplying oscillating signals (Sm) at a determined frequency, a mixer unit (4) for mixing the incoming signals with the oscillating signals from the oscillator stage to generate intermediate signals (IF), a bandpass filter (5) for filtering the intermediate signals (IF), and a demodulator (6) receiving the filtered intermediate signals and supplying the data signals. The local oscillator stage is configured automatically by a control signal (Cm) from the processing unit to adapt the frequency of the oscillating signals (Sm) in accordance with the incoming radio-synchronous signal frequency, so that the intermediate signal (IF) frequency is within the frequency band of the bandpass filter.
Abstract:
Nanocomposites of conductive, nanoparticulate polymer and electronically active material, in particular PEDOT and LiFePO4, were found to be significantly better compared to bare and carbon coated LiFePO4 in carbon black and graphite filled non conducting binder. The conductive polymer containing composite outperformed the other two samples. The performance of PEDOT composite was especially better in the high current regime with capacity retention of 82% after 200 cycles. Further improvement can be obtained if the porosity of the nanocomposites is enhanced. Hence an electrode produced from a composite made of conductive, nanoparticulate polymer, electronically active material, and sacrificial polymer, wherein the sacrificial polymer has been removed leaving pores has improved electrolyte and ion diffusion properties allowing the production of thicker electrodes.
Abstract:
The amplifier circuit (1) includes a differential pair of PMOS transistors at input (P3, P4), whose source receives a current from a current source (3). The gate of the first transistor (P3) of the pair defines a non-inverting input (XOUT) and the gate of the second transistor (P4) of the pair defines an inverting input (XIN). A drain of the first transistor (P3) of the differential pair is connected to a diode connected NMOS transistor (N2) of a first current mirror (N1, N2), and a drain of the second transistor (P4) of the differential pair is connected to a diode connected NMOS transistor (N3) of a second current mirror (N3, N4). A diode connected PMOS transistor (P2) of a third current mirror is connected to the drain of a second NMOS transistor (N4) of the second current mirror, while a drain of a second PMOS transistor (P1) of the third current mirror is connected to the drain of a second NMOS transistor (N1) of the first current mirror to define a first output (OUT1), which is inverted by a reverser (N5, P7) to supply an inverted output signal (OUT) capable of varying rail to rail. A first complementary NMOS transistor (N6) is connected in the form of a reverser with the first PMOS transistor (P3) of the differential pair. A second complementary NMOS transistor (N7) is connected in the form of a reverser with the second MOS transistor (P4) of the differential pair.
Abstract:
The invention relates to an electrolytic deposition in the form of a gold alloy with a thickness of between 1 and 800 microns and which includes copper. According to the invention, the deposition includes indium as the third main compound. The invention concerns the field of electroplating methods.
Abstract:
The collet, which can be made in a single piece and at the same time as the balance-spring, is formed by a plate (1) which includes an aperture (3) for attachment to a balance staff (5) and has an asymmetrical contour (9) which follows at a substantially constant distance d the contour of the first coil (11) of the inner terminal curve. The plate can further include recesses (13) for repositioning the centre of gravity g on the balance staff (5).
Abstract:
The invention concerns an electroformed gold alloy part, characterized in that the gold alloy is made up of 88 to 94% by weight of gold, x % by weight of copper and/or silver, and 2x % by weight of zinc, x being comprised between 2 and 4.
Abstract:
The invention relates to a method of manufacturing (1) a mechanical part (51) including the following steps:a) providing (3) a substrate (53) made of micro-machinable material;b) etching (5), with help of photolithography, a pattern (50) that includes said part through said entire substrate;According to the invention, the method further includes the following steps:c) mounting (7) said etched substrate on a support (55′) so as to leave the top and bottom surfaces of said substrate accessible;d) depositing (9, C′) a coating of better tribological quality than said micro-machinable material on the outer surface of said part e) releasing (11) the part from the substrate. The invention concerns the field of timepiece manufacture.
Abstract:
The resonator (1) for a timepiece results from coupling a first, low frequency resonator (2) with a second, higher frequency resonator (3). The first resonator (2) has a first balance (4) associated with a first balance spring (5). The second resonator (3) has a second balance (6) associated with a second balance spring (7). A third balance spring is arranged between the first (4) and second (6) balances to couple said first (2) and second (3) resonators.