Abstract:
A method of forming a pattern is disclosed. First, N kinds of different photomask patterns are provided. Thereafter, the N kinds of different photomask patterns are transferred to a hard mask layer by using at least N−1 kinds of light sources with different wavelengths, so as to form a hard mask pattern, wherein one of the at least N−1 kinds of light sources with different wavelengths is a light source with a wavelength of 193 nm, and N is an integer of three or more.
Abstract:
A layout decomposition method and a method for manufacturing a semiconductor device applying the same are provided. According to the layout decomposition method, a design layout is received by the logic processor of a computing system. A design rule for layout decomposition is then identified by the logic processor, including identifying dense areas (areas with densely distributed features) on a substrate, and identifying areas with odd-numbered features on the substrate. Next, a first mask with a first pattern and a second mask with a second pattern are generated corresponding to results of design rule identification by the computing system for fabricating patterns of features in at least two of the areas with odd-numbered features in one of the dense areas.
Abstract:
A layout decomposition method and a method for manufacturing a semiconductor device applying the same are provided. According to the layout decomposition method, a design layout is received by the logic processor of a computing system. A design rule for layout decomposition is then identified by the logic processor, including identifying dense areas (areas with densely distributed features) on a substrate, and identifying areas with odd-numbered features on the substrate. Next, a first mask with a first pattern and a second mask with a second pattern are generated corresponding to results of design rule identification by the computing system for fabricating patterns of features in at least two of the areas with odd-numbered features in one of the dense areas.
Abstract:
A layout decomposition method and a method for manufacturing a semiconductor device applying the same are provided. According to the layout decomposition method, a design layout is received by the logic processer of a computing system. A design rule for layout decomposition is then identified by the logic processer, including identifying the loose areas (areas with loosely distributed features) and dense areas (areas with densely distributed features) on a substrate, and identifying first areas with odd-numbered features and second areas with even-numbered features on the substrate. Next, a first mask with a first pattern and a second mask with a second pattern are generated corresponding to results of design rule identification by the computing system.
Abstract:
A semiconductor device includes a substrate and a material disposed on the substrate. The material layer includes plural first patterns arranged parallel and separately in an array within a first region of the substrate, and plural second patterns parallel and separately disposed at two opposite sides of the first patterns, and plural third patterns parallel and separately disposed at another two opposite sides of the first patterns, wherein each of the third patterns has a relative greater dimension than that of each of the first patterns.
Abstract:
Provided is a manufacturing method of s semiconductor structure. The method includes: providing a substrate, wherein the substrate has a plurality of fin portions and at least one recessed portion, the at least one recessed portion is located between two adjacent fin portions of the plurality of fin portions and a bottom surface of the at least one recessed portion is lower than a surface of the substrate between the two of the plurality of fin portions; forming a doping layer on a sidewall of the plurality of fin portions, the surface of the substrate, and a sidewall and a bottom portion of the at least one recessed portion; and forming a dielectric layer on the doping layer. A top surface of the doping layer and a top surface of the dielectric layer are lower than a top surface of each of the plurality of fin portions.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor includes a substrate and a material disposed on the substrate. The material layer includes plural first patterns arranged parallel and separately in an array within a first region of the substrate, and plural second patterns parallel and separately disposed at two opposite sides of the first patterns, and plural third patterns parallel and separately disposed at another two opposite sides of the first patterns, wherein each of the third patterns has a relative greater dimension than that of each of the first patterns.
Abstract:
A layout of a semiconductor device and a method of forming a semiconductor device, the semiconductor device include a first fin and a second fin disposed on a substrate, a gate and a spacer. The first fin and the second fin both include two opposite edges, and the gate completely covers the two opposite edges of the first fin and only covers one sidewall of the two opposite edges of the second fin. The spacer is disposed at two sides of the gate, and the spacer covers another sidewall of the two opposite edges of the second fin.
Abstract:
The present invention discloses a semiconductor structure with an epitaxial layer and method of manufacturing the same. The semiconductor structure with the epitaxial layer includes a substrate, a blocking layer on the substrate, multiple recesses formed in the substrate, wherein the recess extends along crystal faces of the substrate, and an epitaxial layer on the blocking layer, wherein the epitaxial layer is provided with a buried portion in each recess and an above-surface portion formed on the blocking layer.
Abstract:
A mask includes a substrate, a main pattern, a first assist pattern, and a second assist pattern. The main pattern is disposed on the substrate. The main pattern includes a first pattern and second patterns. Two of the second patterns are disposed at two opposite sides of the first pattern in a first direction. The first assist pattern is disposed on the substrate and disposed in the main pattern. The second assist pattern is disposed on the substrate and disposed outside the main pattern. The first assist pattern disposed in the main pattern may be used to improve the pattern transferring performance in a photolithography process using the mask.