Abstract:
A device for releaseably retaining a wing of an aerial vehicle in a folded orientation in a bore of a tube is disclosed. A retaining element is bound around the folded wing elements of a foldable-winged UAV so that the maximum diameter of the folded and bound UAV is less than the diameter of the bore. A releasable retaining fastener is provided and configured whereby the fastener releases when the UAV is propelled through and exits the bore, releasing the retaining element after which the wings of the UAV unfold and return to a flight orientation. The retaining element may include a tether for the retention and reuse of the device after a launch.
Abstract:
A system for launching an unmanned aerial vehicle (UAV) payload includes a launch tube, liquid rocket, and launch control assembly. The rocket is positioned in the launch tube and contains the UAV payload. A booster assembly may include a canister partially filled with liquid. A gas cylinder is filled with compressed gas. The liquid is pre-pressurized by the gas or mixed with the gas right before launch such that, upon launch, liquid and gaseous thrust stages launch the rocket to a threshold altitude. The UAV payload deploys after reaching the threshold altitude. Optional stability tubes may be connected to the launch tube, which may be buoyant for water-based operations. An optional tether may be connected to the liquid rocket for arresting its flight prior to reaching apogee. The UAV payload is not launched directly by the gas/liquid mix. A method of launching the UAV payload is also disclosed.
Abstract:
A foldable wing for use with a very high altitude aircraft capable of operating at an altitude at or above 85,000 feet is disclosed. The foldable wing may employ a spiral fold deployment, wherein a hinge between each segment of the foldable wing is slightly offset from the perpendicular. Successively positioned wing segments fold over one another. Alternatively, the hinges are substantially perpendicular so that each respective wing segment folds linearly against the next wing segment. An inflatable rib, with inflatable arms, can be inflated to provide a force against two adjacent arms, thereby deploying the wing segments through a full 180° of rotation.
Abstract:
A wing includes a spar, and a pair of flexible skins that are attached to the spar. The spar is at the leading edge of the wing, and the skins extend toward the trailing edge of the wing. The wing deploys from a stowed condition, in which the skins are curved in the same direction around a fuselage of an aircraft, to a deployed condition, in which the skins provide the wing with an airfoil cross-sectional shape, for example with the skins curve in opposite direction. A lock is used to maintain the skins in the deployed state, with the lock for example located at the trailing edge of the wing. The lock may be a mechanical mechanism that automatically locks the wing in the deployed state, preventing the wing from returning to the stowed state.
Abstract:
The present invention provides novel inflatable and rigidizable support elements, and methods of manufacture and use thereof. In particular, the present invention provides inflatable and rigidizable support elements which find use in rapidly deploying and supporting the wing of an aerial vehicle.
Abstract:
Methods, systems, and devices for determining system/device configuration and setting a mode of operation based on the determined configuration. An air vehicle processor: (a) receives a component information 14 set of at least one external component; (b) determine a mode of operation, by the processor having a current mode of operation setting, based on the received component information and at least one of: an initial mode of operation setting and the current mode of operation setting; (c) determines whether all of the one or more received component information sets match a configuration requirement; (d) transitions to a flight-ready status if the determination is a conjunctive match; and (e) transition to a reset status if the determination is not a conjunctive match.
Abstract:
A frangible seal includes a first region penetratable by a deployable structure configured to selectably extend through an opening in a housing and extend beyond an outer surface of the housing, and a second region configured to adhere to a portion of the outer surface of the housing surrounding the opening. The first region and the second region includes a polymer layer having a metalized surface (e.g., aluminized polyimide) and a non-metalized surface, and an ablative coating provided on the metalized surface of the polymer layer.
Abstract:
A sonar buoy includes a fuselage having a tube-like shape, one or more wings coupled to the fuselage, an engine coupled to the fuselage and operable to propel the sonar buoy through flight, and a guidance computer operable to direct the sonar buoy to a predetermined location. The sonar buoy further includes a sonar detachably coupled to the fuselage and forming at least a part of the fuselage, and a rocket motor detachably coupled to the fuselage. The one or more wings are operable to be folded into a position to allow the sonar buoy to be disposed within a launch tube coupled to a vehicle and to automatically deploy to an appropriate position for flight after the sonar buoy is launched from the launch tube. The rocket motor propels the sonar buoy from the launch tube and detaches from the fuselage after launch.
Abstract:
A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box forms a first portion of the wing. A skin having a plurality of rigid plates affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
Abstract:
Systems and methods for transitioning an aircraft between helicopter and fixed wing flight modes are provided. In one embodiment, an aircraft comprises a plurality of wings each having a spar and a flap; a flap actuator configured to move the flap with respect to the spar; and a center section rotatably coupled to each spar. The center section includes at least one spar actuator configured to rotate at least one of the wings about a rotational axis of the spar when the aircraft transitions between helicopter and fixed wing flight modes.