Abstract:
Techniques for mitigating data loss during autonomous system information (SI) reading by a user equipment (UE) are described. For autonomous SI reading, the UE may autonomously determine when to read system information from neighbor cells and may not inform a serving cell. In one design, the UE may autonomously select a SI reading gap for reading system information from a neighbor cell. During the SI reading gap, the UE may suspend reception of downlink transmission from the serving cell, receive system information from the neighbor cell, and maintain capability to transmit on the uplink to the serving cell. In one design, the serving cell may determine SI reading gaps autonomously selected by the UE for reading system information from neighbor cells. The serving cell may communicate with the UE by accounting for the SI reading gaps of the UE, e.g., may suspend communication with the UE during the SI reading gaps.
Abstract:
Aspects of the disclosure are related to identifying whether an apparatus (e.g., base station, access point, etc.) is transmitting using a CRS based transmission scheme or a UE-RS based transmission scheme. Such detection may be necessary for PDSCH interference cancellation (IC) of a neighboring cell since a UE may not know which transmission scheme is used by the neighboring cell. For instance, the UE may know the transmission scheme of the serving cell, but the UE may not know the transmission scheme of a neighboring non-serving cell. As such, aspects of the disclosure provide for a blind detection algorithm to identify or determine a transmission mode or transmission scheme of a neighboring cell to then apply interference cancellation (IC) to an interfering signal received from the neighboring cell.
Abstract:
Certain aspects of the present disclosure relate to techniques for reporting Channel Quality Indicator (CQI). In certain aspects, a User Equipment (UE) may schedule switch from at least a first set of zero or more antennas used by the UE, to at least one second set of zero or more antennas, wherein the first and second sets differ by at least one antenna. The UE may determine a Channel Quality Indicator (CQI) to be reported from the UE for use at a base station in a subsequent CQI subframe set, based at least on the scheduled switch. The UE may thereafter transmit the CQI to the base station.
Abstract:
Techniques for supporting communication in a heterogeneous network are described. In an aspect, communication in a dominant interference scenario may be supported by reserving subframes for a weaker base station observing high interference from a strong interfering base station. In another aspect, interference due to a first reference signal from a first station (e.g., a base station) may be mitigated by canceling the interference at a second station (e.g., a UE) or by selecting different resources for sending a second reference signal by the second station (e.g., another base station) to avoid collision with the first reference signal. In yet another aspect, a relay may transmit in an MBSFN mode in subframes that it listens to a macro base station and in a regular mode in subframes that it transmits to UEs. In yet another aspect, a station may transmit more TDM control symbols than a dominant interferer.
Abstract:
Techniques for receiving reference signals from multiple nodes and determining channel state information (CSI) for the nodes are disclosed. A user equipment (UE) may determine and report CSI for the multiple nodes to support data transmission to the UE. The nodes may transmit reference signals based on different configurations. The configuration for each node may indicate when, where, and how the node transmits its reference signal. The UE may determine CSI for different nodes and/or different combinations of nodes based on the reference signals transmitted by these nodes as well as an indication of which subframes to use to determine each CSI reported by the UE. The UE may report different CSIs for different subframes and may receive data transmission sent by a single node or a combination of nodes based on the reported CSIs.
Abstract:
A method and apparatus of wireless communication are disclosed. The wireless communication performs pilot signal transmissions using a first precoding matrix for user equipment specific pilot signals, the pilot signal transmissions having a first transmission rank. The wireless communication also performs data transmissions using a second precoding matrix for data when the data transmissions have a second transmission rank less than the first transmission rank, in which the second precoding matrix includes a transformed version of the first precoding matrix. Alternatively, the wireless communication can perform data transmissions using at least two precoding matrices for data when the data transmissions have a second transmission rank less than or equal to the first transmission rank. Accordingly, the precoding matrix used for data is a transformed version of the precoding matrix used for user equipment specific pilot signals.
Abstract:
Methods and apparatus for selecting samples for secondary synchronization signal (SSS) detection are described. Several alternatives are provided for efficient cell identifier detection. In a first alternative, multiple bursts of a signal received from a cell are sampled with non-uniform spacing between sampling intervals to determine a sequence for cell identification. In a second alternative, samples of a first and a second signal received from a stronger cell are cancelled, and a sequence for detecting a weaker cell is determined by reducing effects of the samples of a third signal received from the weaker cell which do not overlap with the primary synchronization signal (PSS) or SSS of the stronger cell. In a third alternative, a sequence for detecting a weaker cell is determined by reducing effects of any sampled bursts that correspond to a high transmission power portion of a signal from a stronger cell.
Abstract:
Hybrid automatic repeat request (HARQ) acknowledgement (ACK) feedback enhancements are disclosed for new radio (NR) unlicensed (NR-U). In the downlink control channel, two sets of identifiers (IDs) may be explicitly or implicitly signaled. The two IDs identify a current set ID and an additional set ID. Where the two IDs match, then the ACK feedback transmitted in the current ACK message will reflect the current transmissions. Otherwise, where the two IDs are different, the additional set ID identifies any previous or different ACK information that should be transmitted for prior transmissions.
Abstract:
Random access channel access and validity procedures are disclosed. In one aspect, the medium access control (MAC) indications multiple random access occasions (ROs) to user equipments (UEs) for random access transmissions. In such aspect, random access failure would only be declared if listen before talk (LBT) procedures for the random access transmission fail on all of the ROs indicated by the MAC layer. Similarly, in additional aspects, a UE will not apply a backoff value for any LBT failures for random access attempts that occur within an LBT time window. In further aspects, a UE may determine the validity of ROs that overlap with a discovery reference signal measurement timing configuration (DMTC) window. In such aspects, the UE may not use overlapping ROs or may determine a portion of the DMTC window that is not used for base station transmissions and declare the overlapping ROs with the unused portion valid.
Abstract:
This disclosure provides systems, methods and apparatus for a user equipment (UE), operating in a shared spectrum in a connected state or an idle state, to receive a channel occupancy time structure information (COT-SI) which includes one or more of a COT duration, a COT end symbol, and a COT pause indication, in addition to slot format indication for one or more slots. Some aspects described herein define a hierarchical approach to COT structure information (COT-SI) signaling. For example, a UE may be configured with a set of short COT tables using remaining minimum system information (RMSI) signaling and may receive concatenation of COT-SI signaling identifying index values in a control channel corresponding to one or more of the set of COT tables. Based on receiving COT-SI signaling, the UE may communicate in accordance with an occurrence of a COT.