Abstract:
A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
Abstract:
A controller for a mobile robot 1 which carries out task of mobbing an object W so as to make a position of a representative point of the object W and a posture of the object follow a desired position trajectory and a desired posture trajectory, in a state where distal portions of arms 7, 7 is made to contact a portion Wb adjacent to one end of the object W, which variably sets the position of the representative point of the object W in an object coordinate system when the object W is observed in the yaw axis direction, at least in accordance with the change of the desired posture about the yaw axis in the desired posture trajectory. By doing so, movement of the object appropriate for the changing pattern of the desired posture of the object is carried out.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
A moving device (70) determines an obstacle virtual existence region (72) of a simple graphic approximating a detected obstacle (71) to detect the obstacle (71) in a real time and determine a smooth avoidance path by calculation, thereby performing collision prediction.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A localization system and method of a mobile robot using a camera and artificial landmarks in a home and a general office environment (or working zone) is provided. The localization system includes artificial landmarks having an LED flash function in an invisible wavelength band, a camera with a wide-angle lens, a module flashing landmarks attached at the ceiling and identifying positions and IDs of the landmarks from an image photographed by the camera having a filter, a module calculating position and orientation of the robot using two landmarks of the image in a stop state, a module, when a ceiling to which the landmarks are attached has different heights, a position of the robot, and a module, when a new landmark is attached in the working zone, calculating a position of the new landmark on an absolute coordinate.
Abstract:
A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
Abstract:
A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.