Abstract:
A brushless DC motor including a stator having plural slots; and a rotor which has plural permanent magnets and is divided into three rotor blocks in a rotation axis direction, the three rotor blocks being layered so that the arrangement angles of the rotor blocks differ from each other by an amount of a mechanical angle in a rotary direction that is equivalent to one third of a pulsation period of cogging torque generated by the rotor and stator. A brushless DC motor including a rotor having plural magnetic poles provided at an equal pitch in a circumferential direction by mounting permanent magnets in magnet mounting holes; and a stator having plural slots arranged at an equal pitch in a circumferential direction. The magnetic poles of the rotor include magnetic poles whose magnet deviation angle formed by the central line of an effective polar opening angle and the central line of the magnet mounting hole is the first angle; and magnetic poles whose magnet deviation angle is the second angle different from the first angle.
Abstract:
A permanent magnet motor to reduce torque ripple includes a rotor having at least three segments. Each of the three segments is formed sequentially adjacent and aligned along an axis of the rotor. Each segment has at least one pair of permanent magnets disposed at a substantially equal interval in a peripheral direction of the rotor. First and second segments are skewed relative to each other by a first angular displacement, and the first and third segments are skewed relative to each other by a second angular displacement. The first and second angular displacements are selected to cause a net sum of torque ripple produced by each of the segments to be substantially equal to zero during an operation of the motor.
Abstract:
A stator (1) for an electrical induction machine comprises at least two stator sections (2, 3) at two different axial positions, each section having a plurality of circumferentially separated, radially extending teeth (6, 7) and each tooth having a single winding. The stator sections are mutually phase-shifted so as to reduce the effect of other harmonics than the working harmonics. In a stator having two separated stator sections, these are physically phase-shifted by 180° electrical±an angle related to skew, and then have their electrical supplies also shifted by 180° electrical.
Abstract:
A brushless DC permanent magnet motor having a step skewed rotor including a rotor shaft having a portion having a substantially uniform cross sectional configuration defined by N planar sides of substantially equal length and width wherein N is equal to the number of poles of the motor, first and second annular sets of N number of substantially identically shaped bread loaf magnets one of which is attached to each of the N planar sides of the rotor shaft wherein the magnets of the first set have their orientation reversed with respect to the magnets of the second set and the magnets of the first set are offset or skewed by a predetermined skew angle from the magnets of the second set of magnets to form a stepped skewed rotor.
Abstract:
An electromagnetic motor employing plural rotors is provided, with each rotor exhibiting a permanent magnetic field. A control module selectively induces magnetic fields in electromagnetic pads surrounding each of the rotors. Through the interaction of the permanent and induced magnetic fields, the rotors can turn. As a result, a shaft mechanically engaging the rotors also turns to provide mechanical power. In response to the shaft rotation, an alternator generates sufficient electrical power to sustain the operation of the control module without an external power source. The magnetic polarities of the induced magnetic fields can be reversed, thus causing the rotors to continue turning. In various applications, the motor can be installed in a vehicle or in a building power supply as desired.
Abstract:
Several embodiments of rotating electrical machines where cogging torque is reduced as well as the distortion of the back emf and improve torque characteristic with reduced torque ripples by dividing either the permanent magnets and/or the poles of the coil windings in axially separated portions that are circumferentially shifted relative to each other.
Abstract:
A motor for reducing torque ripple includes a shaft having a shaft axis, a rotor positioned about the shaft, a first magnet ring positioned on the rotor, the first magnet ring having magnets each occupying a magnet angle null on the rotor, and a second magnet ring positioned on the rotor, the second magnet ring having magnets each occupying a magnet angle null on the rotor, wherein the second magnet ring is shifted a non-zero number of degrees relative to the first magnet ring and wherein ends of each magnet within the second magnet ring are located at different angular positions than ends of each magnet within the first magnet ring relative to the shaft axis of the shaft. The magnet angle null is preferably an optimal magnet angle for minimizing cogging torque and line to line back emf harmonics. A method of determining the optimal magnet angle includes determining a first magnet angle where cogging torque is minimized, determining a second magnet angle where harmonic content of nth harmonic is minimized, and using the first magnet angle and the second magnet angle, determining an optimal magnet angle for minimizing both cogging torque and nth harmonic.
Abstract:
A brushless motor A includes a permanent magnet used as a rotor 1 that is driven by three-phase power supply, wherein the permanent magnet is magnetized by a trapezoidal magnetization, and the trapezoidal magnetization is applied such that a generation period of a cogging torque is set to almost half of the generation period of the cogging torque generated when the permanent magnet to which a square magnetization is applied is used. In this brushless motor A, preferably a skew magnetization is also applied to the rotor 1. Further, in case of driven by a sinusoidal-wave current, the skew angle is set to the angle in the range that has null15% of the reference angle as an upper limit and a lower limit by a combination of a trapezoidal magnetization and a skew magnetization.
Abstract:
A permanent magnet structure for use in brushless motors is disclosed. In an exemplary embodiment of the invention, the magnet structure includes a parallelogram shaped body. The body has an outer surface and an inner surface, with the outer surface and the inner surface being arcuate in shape.
Abstract:
A stator core for a concentrated winding type brushless DC motor that has a plurality of spaced teeth extending inwardly of the core outer diameter to a core inner diameter to define slots between two adjacent teeth for a winding. Each tooth has right and left distal ends projecting in opposite directions transverse to the tooth with the opposite distal ends of two adjacent teeth each being linear and defining an aperture into a slot between the two teeth. The distal end of each tooth also has an angled edge at the side facing the core outer diameter so that the distal end is wider at the aperture than at the point where the distal end extends from the tooth. Also, there is a distance T between a line connnecting the end points of the right and left distal ends of a tooth facing the core outer diameter at the aperture defined by each said distal end and a tangent line at an inner core diameter of the tooth and such that T≧0.