Abstract:
A robotic attacher retrieves cups from the left side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching a first cup to the left front teat, a second cup to the right front teat, a third cup to the left rear teat, and a fourth cup to the right rear teat.
Abstract:
A system includes a front wall, a rear wall opposite the front wall, and first and second side walls extending between the front wall and the rear wall. The first side wall includes a gate, and the second side wall is spaced apart from the first side wall such that the front wall, the rear wall, the first side wall, and the second side wall define a milking box stall that accommodates a dairy livestock. The system includes an equipment portion adjacent to the rear wall. It houses a separation container that receives milk to be discarded from the dairy livestock. The equipment portion further houses a robotic attacher that extends from behind and between the rear legs of a dairy livestock located within the milking box stall in order to attach milking equipment to the dairy livestock.
Abstract:
A robotic attacher retrieves cups from the right side of an equipment area located behind a dairy livestock and attaches the cups to the teats of the dairy livestock in sequence. The sequence comprises attaching a first cup to the right front teat, a second cup to the left front teat, a third cup to the right rear teat, and a fourth cup to the left rear teat.
Abstract:
In an exemplary embodiment, a system includes a milking cup, a pulsating device coupled to the milking cup, a robotic arm comprising a gripper, and a controller communicatively coupled to the robotic arm and the pulsating device. The controller is operable to instruct the gripper of the robotic arm to grip the milking cup, instruct the robotic arm to move the milking cup proximate to a teat of a dairy livestock, and instruct the robotic arm to move the milking cup towards the teat. The controller is further operable to instruct the pulsating device to apply pressure to the milking cup before attaching the milking cup to the teat and instruct the gripper of the robotic arm to release the milking cup.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion comprises at least one nozzle and is operable to rotate such that during a first mode of operation, the nozzle is positioned away from the top of the gripping portion, and during a second mode of operation, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A system includes includes a first milking box stall of a size sufficient to accommodate a first dairy livestock and a second milking box stall of a size sufficient to accommodate a second dairy livestock. The first and second milking box stalls face opposite directions. An equipment portion is located between the first milking box stall and the second milking box stall. A robotic attacher is housed in the equipment portion and configured to service both stalls at different times.
Abstract:
A system includes a first milking box stall cluster comprising a first plurality of milking box stalls and a first robotic attacher associated with the first milking box stall cluster. The first robotic attacher is positioned to service each of the first plurality of milking box stalls. The system further includes a second milking box cluster comprising a second plurality of milking box stalls. It is positioned adjacent to the first milking box stall cluster. A second robotic attacher is associated with the second milking box stall cluster and is positioned to service each of the second plurality of milking box stalls.
Abstract:
In an exemplary embodiment, a system includes a three-dimensional camera and a processor communicatively coupled to the three-dimensional camera. The processor is operable to determine a first edge of a dairy livestock, determine a second edge of the dairy livestock, determine a third edge of the dairy livestock, and determine a fourth edge of the dairy livestock.
Abstract:
A method for killing pests in an affected area of a structure, comprises positioning a heat exchanger unit within an affected area, coupling a first end of an inlet hose to a faucet, and coupling a second end of the inlet hose to an inlet port of the heat exchanger unit such that the heat exchanger unit may receive a flow of water from the faucet. The heat exchanger unit generates heated air by transferring heat from the flow of water received from the faucet to air flowing through the heat exchanger unit. The method continues by positioning an electric heater proximate to the heat exchanger unit, the electric heater operable to further heat the heated air emitted by the heat exchanger unit to a target temperature greater than 120 degrees Fahrenheit, the further heated air being emitted into the affected area.
Abstract:
A system comprises a memory operable to store first light intensity information for a first pixel of an image that includes a dairy livestock, and second light intensity information for a second pixel of the image, wherein the second pixel is adjacent to the first pixel. The system further comprises a processor communicatively coupled to the memory and operable to determine that a difference between the first light intensity information and the second light intensity information exceeds a threshold, and discard one of the first pixel or the second pixel from the image.